Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Cysteine–Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic–Biological Hybrid System


Tandem "Z-scheme" approaches to solar-to-chemical production afford the ability to independently develop and optimize reductive photocatalysts for CO2 reduction to multicarbon compounds and oxidative photocatalysts for O2 evolution. To connect the two redox processes, molecular redox shuttles, reminiscent of biological electron transfer, offer an additional level of facile chemical tunability that eliminates the need for solid-state semiconductor junction engineering. In this work, we report a tandem inorganic-biological hybrid system capable of oxygenic photosynthesis of acetic acid from CO2. The photoreductive catalyst consists of the bacterium Moorella thermoacetica self-photosensitized with CdS nanoparticles at the expense of the thiol amino acid cysteine (Cys) oxidation to the disulfide form cystine (CySS). To regenerate the CySS/Cys redox shuttle, the photooxidative catalyst, TiO2 loaded with cocatalyst Mn(II) phthalocyanine (MnPc), couples water oxidation to CySS reduction. The combined system M. thermoacetica-CdS + TiO2-MnPc demonstrates a potential biomimetic approach to complete oxygenic solar-to-chemical production.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View