- Main
Regional Differences in Seasonal Timing of Rainfall Discriminate between Genetically Distinct East African Giraffe Taxa
Published Web Location
https://doi.org/10.1371/journal.pone.0077191Abstract
Masai (Giraffa tippelskirchi), Reticulated (G. reticulata) and Rothschild's (G. camelopardalis) giraffe lineages in East Africa are morphologically and genetically distinct, yet in Kenya their ranges abut. This raises the question of how divergence is maintained among populations of a large mammal capable of long-distance travel, and which readily hybridize in zoos. Here we test four hypotheses concerning the maintenance of the phylogeographic boundaries among the three taxa: 1) isolation-by-distance; 2) physical barriers to dispersal; 3) general habitat differences resulting in habitat segregation; or 4) regional differences in the seasonal timing of rainfall, and resultant timing of browse availability. We used satellite remotely sensed and climate data to characterize the environment at the locations of genotyped giraffes. Canonical variate analysis, random forest algorithms, and generalized dissimilarity modelling were employed in a landscape genetics framework to identify the predictor variables that best explained giraffes' genetic divergence. We found that regional differences in the timing of precipitation, and resulting green-up associated with the abundance of browse, effectively discriminate between taxa. Local habitat conditions, topographic and human-induced barriers, and geographic distance did not aid in discriminating among lineages. Our results suggest that selection associated with regional timing of events in the annual climatic cycle may help maintain genetic and phenotypic divergence in giraffes. We discuss potential mechanisms of maintaining divergence, and suggest that synchronization of reproduction with seasonal rainfall cycles that are geographically distinct may contribute to reproductive isolation. Coordination of weaning with green-up cycles could minimize the costs of lactation and predation on the young. Our findings are consistent with theory and empirical results demonstrating the efficacy of seasonal or phenologically dictated selection pressures in contributing to the reproductive isolation of parapatric populations.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-