Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Exposure measurement error in air pollution studies: A framework for assessing shared, multiplicative measurement error in ensemble learning estimates of nitrogen oxides.

  • Author(s): Girguis, Mariam S
  • Li, Lianfa
  • Lurmann, Fred
  • Wu, Jun
  • Urman, Robert
  • Rappaport, Edward
  • Breton, Carrie
  • Gilliland, Frank
  • Stram, Daniel
  • Habre, Rima
  • et al.
Abstract

Background

Increasingly ensemble learning-based spatiotemporal models are being used to estimate residential air pollution exposures in epidemiological studies. While these machine learning models typically have improved performance, they suffer from exposure measurement error that is inherent in all models. Our objective is to develop a framework to formally assess shared, multiplicative measurement error (SMME) in our previously published three-stage, ensemble learning-based nitrogen oxides (NOx) model to identify its spatial and temporal patterns and predictors.

Methods

By treating the ensembles as an external dosimetry system, we quantified shared and unshared, multiplicative and additive (SUMA) measurement error components in our exposure model. We used generalized additive models (GAMs) with a smooth term for location to identify geographic locations with significantly elevated SMME and explain their spatial and temporal determinants.

Results

We found evidence of significant shared and unshared multiplicative error (p < 0.0001) in our ensemble-learning based spatiotemporal NOx model predictions. Unshared multiplicative error was 26 times larger than SMME. We observed significant geographic (p < 0.0001) and temporal variation in SMME with the majority (43%) of predictions with elevated SMME occurring in the earliest time-period (1992-2000). Densely populated urban prediction regions with complex air pollution sources generally exhibited highest odds of elevated SMME.

Conclusions

We developed a novel statistical framework to formally evaluate the magnitude and drivers of SMME in ensemble learning-based exposure models. Our framework can be used to inform building future improved exposure models.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View