Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport, and a mechanism for supernova explosion enhancement


We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) active-sterile neutrino conversion in the νe νs channel in the collapse of the iron core of a presupernova star. For values of sterile neutrino rest mass ms and vacuum mixing angle θ (specifically, 0.5keV5×10-12) which include those required for viable sterile neutrino dark matter, our one-zone in-fall phase collapse calculations show a significant reduction in core lepton fraction. This would result in a smaller homologous core and therefore a smaller initial shock energy, disfavoring successful shock reheating and the prospects for an explosion. However, these calculations also suggest that the MSW resonance energy can exhibit a minimum located between the center and surface of the core. In turn, this suggests a post-core-bounce mechanism to enhance neutrino transport and neutrino luminosities at the core surface and thereby augment shock reheating: (1) scattering-induced or coherent MSW νe→νs conversion occurs deep in the core, at the first MSW resonance, where νe energies are large (∼150MeV); (2) the high energy νs stream outward at near light speed; (3) they deposit their energy when they encounter the second MSW resonance νs→νe just below the proto-neutron star surface. © 2006 The American Physical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View