
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Identifying Key Pathways in Multiple Cancers with Multi-omics Pathway Analysis

Permalink
https://escholarship.org/uc/item/7j0151v4

Author
Ng, Sam

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j0151v4
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 
SANTA CRUZ 

 
 

IDENTIFYING KEY PATHWAYS IN MULTIPLE CANCERS WITH 
MULTI-OMICS PATHWAY ANALYSIS 

 
A dissertation submitted in partial satisfaction 

of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

BIOMOLECULAR ENGINEERING & BIOINFORMATICS 
 

by 
 

Sam Ng 
 

June 2015 
 
 

The Dissertation of Sam Ng is approved: 
 

_________________________________ 
Professor Josh Stuart, Chair 
 
_________________________________ 
Professor David Haussler 
 
_________________________________ 
Professor Christopher Benz 
 
_________________________________ 
Professor Eric Collisson 

 
 
____________________________________ 
Tyrus Miller, Ph.D.  
Vice Provost and Dean of Graduate Studies



 

 

 

 

 

Copyright © by 

Sam Ng 

2015 

 
 



	   iii	  

Table of Contents 

List of Figures 	  ......................................................................................................................	  v	  

Abstract	  ..................................................................................................................................	  vii	  

1	   Introduction	  and	  Overview	  .........................................................................................	  1	  
1.1	   Precision	  Medicine	  in	  Cancer	  ..................................................................................................	  4	  
1.2	   Driver	  and	  Passenger	  Events	  in	  Cancer	  Evolution	  ........................................................	  6	  
1.3	   How	  Pathway	  Analysis	  Can	  Improve	  Cancer	  Treatment	  ............................................	  7	  
1.3.1	   Pathway	  Biomarkers	  of	  Therapeutic	  Response	  ..........................................................	  8	  
1.3.2	   The	  Challenge	  of	  Apparent	  Oncogene	  Negative	  Tumors	  .........................................	  8	  
1.4	   PARADIGM	  an	  Integrative	  Approach	  for	  Understanding	  Cancer	  ............................	  9	  
1.4.1	   PARADIGM	  Features	  Identify	  Trends	  Not	  Apparent	  with	  Gene	  Expression	  
Data	  Alone	  .................................................................................................................................................	  13	  
1.4.2	   Considerations	  when	  running	  PARADIGM	  ..................................................................	  13	  
1.5	   Summary	  ........................................................................................................................................	  14	  

2	   PATHMARK	  ....................................................................................................................	  15	  
2.1	   Subtype	  Specific	  and	  Independent	  Patterns	  Identified	  by	  PARADIGM	  

Analysis	  in	  TCGA	  Colorectal	  ..................................................................................................	  15	  
2.2	   The	  PATHMARK	  Method	  .........................................................................................................	  17	  
2.3	   Pathway	  Signatures	  Identify	  Familiar	  Networks	  Related	  to	  Breast	  

Cancer	  Subtype	  ...........................................................................................................................	  20	  
2.4	   Differentiating	  Drug	  Response	  in	  Breast	  Cancer	  Cell	  Lines	  and	  

Tumors	  ...........................................................................................................................................	  23	  
2.5	   Summary	  ........................................................................................................................................	  25	  

3	   PARADIGM-‐SHIFT	  ........................................................................................................	  27	  
3.1	   Orthogonal	  Methods	  for	  Assessing	  Mutations	  ..............................................................	  30	  
3.2	   The	  PARADIGM-‐SHIFT	  Method	  ............................................................................................	  34	  
3.2.1	   Detailed	  Description	  of	  the	  PARADIGM-‐SHIFT	  Score	  .............................................	  38	  
3.2.2	   Initial	  Findings	  on	  Published	  TCGA	  Datasets	  .............................................................	  43	  
3.2.3	   Concordance	  with	  Recurrence-‐based	  Methods	  ........................................................	  45	  
3.2.4	   Orthogonality	  with	  Sequence-‐based	  Methods	  ...........................................................	  48	  
3.3	   NFE2L2	  in	  TCGA	  LUSC	  .............................................................................................................	  50	  
3.4	   RHOA	  in	  TCGA	  STAD	  .................................................................................................................	  52	  
3.5	   TCGA	  PanCancer	  12	  ..................................................................................................................	  55	  
3.6	   NOTCH1	  in	  TCGA	  LGG	  ..............................................................................................................	  58	  
3.7	   Summary	  ........................................................................................................................................	  61	  

4	   PARADIGM-‐SHIFT	  ‘Driver	  Modules’	  .......................................................................	  64	  
4.1	   HPV	  infection	  and	  TP53	  in	  TCGA	  HNSC	  ............................................................................	  64	  
4.2	   RTK	  Fusions	  in	  TCGA	  PanCancer	  28	  ..................................................................................	  67	  
4.3	   BRAF,	  RAS,	  and	  NF1	  in	  TCGA	  Melanoma	  .........................................................................	  70	  
4.4	   NFE2L2	  and	  KEAP1	  in	  PanCancer	  12	  ................................................................................	  73	  



	   iv	  

4.5	   The	  PARADIGM-‐SHIFT	  Molecular	  Machines	  Method	  .................................................	  75	  
4.5.1	   Application	  to	  BRAF	  in	  SKCM	  ............................................................................................	  78	  
4.5.2	   MYB	  and	  MALAT1	  in	  the	  Larsson	  505	  ...........................................................................	  79	  
4.6	   Summary	  ........................................................................................................................................	  80	  

5	   Galaxy	  Integration	  .......................................................................................................	  82	  
5.1	   Addressing	  the	  Need	  for	  Accessible	  and	  Reproducible	  

Computational	  Tools	  ................................................................................................................	  82	  
5.2	   UCSC	  Pathway	  Analysis	  Toolshed	  .......................................................................................	  83	  
5.2.1	   PARADIGM	  .................................................................................................................................	  84	  
5.2.2	   PATHMARK	  ...............................................................................................................................	  85	  
5.2.3	   PARADIGM-‐SHIFT	  ..................................................................................................................	  85	  
5.2.4	   CircleMaps	  and	  CytoscapeJS	  ..............................................................................................	  86	  
5.2.5	   Making	  the	  Connections	  with	  Galaxy	  Workflows	  .....................................................	  87	  
5.3	   Future	  Challenges	  ......................................................................................................................	  88	  
5.3.1	   Shipping	  Modules	  with	  Docker	  ........................................................................................	  88	  
5.3.2	   Enforcing	  File	  Formats	  .........................................................................................................	  89	  
5.4	   Summary	  ........................................................................................................................................	  89	  

References 	  ............................................................................................................................	  91	  
 



	   v	  

List of Figures 

Figure 1 PARADIGM model of integrating genomic data with a pathway model to infer 
pathway activities	  .....................................................................................................................................	  10	  

Figure 2 Gene dogma and interaction model for PARADIGM inference	  .......................................	  11	  

Figure 3 PARADIGM IPL heatmap for CRC	  ...........................................................................................	  16	  

Figure 4 Overview of the PATHMARK methodology	  ...........................................................................	  17	  

Figure 5 PATHMARK subnet heatmaps for four different breast cancer cell line subtypes	  .....	  22	  

Figure 6 PATHMARK subnetworks are predictive of drug response in breast cancer cell-lines
	  .........................................................................................................................................................................	  24	  

Figure 7 Anticipated pathway influences for gain- and loss-of-function mutations	  ...................	  28	  

Figure 8 Discrepancies in pathway signals can be isolated through PARADIGM	  .......................	  35	  

Figure 9 Detailed diagram of the PARADIGM-SHIFT method	  .........................................................	  36	  

Figure 10 PARADIGM-SHIFT predictions concordant with MutSig	  ...............................................	  46	  

Figure 11 PARADIGM-SHIFT correlations to sequence-based approaches	  ..................................	  49	  

Figure 12 PARADIGM-SHIFT result for NFE2L2 in LUSC	  ..............................................................	  51	  

Figure 13 PARADIGM-SHIFT result for RHOA in STAD	  .................................................................	  53	  

Figure 14 PARADIGM-SHIFT result for TP53 in ovarian, basal breast, and squamous tumors in 
the PanCancer 12	  ......................................................................................................................................	  56	  

Figure 15 Isoform specific expression of TP63 and TP73 isoforms in ovarian, basal breast, and 
squamous tumors in the PanCancer 12	  ..............................................................................................	  57	  

Figure 16 PARADIGM-SHIFT result for NOTCH1 in LGG	  ..............................................................	  60	  

Figure 17 Mutational pattern of NOTCH1 in LGG, HNSC, and ALL	  ............................................	  61	  

Figure 18 PARADIGM-SHIFT result for TP53 and HPV+ in HNSC	  ..............................................	  65	  

Figure 19 PARADIGM-SHIFT result for RTK events in the PanCancer 28	  ..................................	  68	  

Figure 20 PARADIGM-SHIFT result for RTK fusion events in the PanCancer 28	  ....................	  69	  

Figure 21 PARADIGM-SHIFT result for BRAF, RAS, and NF1 in SKCM	  ..................................	  72	  

Figure 22 PARADIGM-SHIFT result for NFE2LE in PanCancer 12 showing samples with high 
PS score in many NFE2L2 wild-type cases	  .....................................................................................	  73	  

Figure 23 KEAP1 mutations is most significantly associated with NFE2L2 predicted GOF in 
wild-type samples	  .....................................................................................................................................	  74	  



	   vi	  

Figure 24 Procedure for discovering significantly associated events by PARADIGM-SHIFT 
score	  ...............................................................................................................................................................	  76	  

Figure 25 PARADIGM-SHIFT identifies BRAF/NRAS/NF1 molecular machine	  ......................	  78	  

Figure 26 PARADIGM-SHIFT identifies MALAT1 association with MYB GOF	  ......................	  80	  

Figure 27 PATHMARK tool in Galaxy with a record of the analysis on the History bar	  ..........	  84	  

Figure 28 CytoscapeJS view with CircleMaps displayed	  ....................................................................	  87	  

Figure 29 Example workflow from running PARADIGM to identifying PATHMARK pathway 
markers	  .........................................................................................................................................................	  88	  

	  

  

  



	   vii	  

Abstract 

 

IDENTIFYING KEY PATHWAYS IN MULTIPLE CANCERS WITH 
MULTI-OMICS PATHWAY ANALYSIS 

 

By 

 

Sam Ng 

 

Since response to therapy can differ greatly between cancer patients, a 

precision medicine approach to treating cancer based on the uniqueness of 

patient tumors could greatly improve response rate and quality of life. High-

throughput assays provide the means to probe multiple types of genomic 

alterations across a patient’s cancer genome. By leveraging prior knowledge 

about genetic pathways, I have created tools to address the challenges of 

tackling large multi-dimensional datasets to make biological sense of the data. 

I developed PATHMARK to identify clusters of genes that are dysregulated 

together forming networks that offer insights into disease mechanisms and 

treatment strategies. PATHMARK utilizes conventional univariate differential 

analysis with a filter on pathway interactions to identify sub-networks that are 

significantly more connected than by chance. I developed PARADIGM-SHIFT 

to predict the functional impact of mutations detected from whole-exome 
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sequencing data. PARADIGM-SHIFT analyzes the inferred activities of a 

network surrounding a mutated gene, comparing the levels between mutant and 

wild-type samples. The approach predicts if mutations are likely to be neutral, 

gain-of-function, or loss-of-function. I demonstrate how inferences about 

mutations in novel genes and in non-coding regions can be gleaned from 

models trained on known coding mutations. The predictions form “molecular 

machines” that link events together based on shared pathway alteration. With 

the growing number of available datasets and computational tools, it has 

become increasingly important to make analyses easily accessible and 

reproducible. To support these ideals, I have developed my tools to be 

compatible within the Galaxy system, which has enabled collaborators to apply 

my tools to analyze their data. 
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1 Introduction and Overview 

The management – diagnosis, prognosis, and treatment – of cancer has 

evolved tremendously in the past few years. Our understanding of the molecular 

differences and similarities between tumors across thousands of patients originating 

from many tissue types has grown due to the advent of lower cost genomic assays. 

These assays allow researchers and clinicians to probe many facets of a patient’s 

tumor and make observations not visible by examining tumor cells under a 

microscope. Within the tens of thousands of data points for each patient’s tumor is a 

wealth of knowledge, extracting that knowledge remains a major challenge. This is 

especially true due to the “curse of dimensionality,” the problem that arises when the 

number measurements per sample is much larger than the size of the cohorts being 

studied. Because of this high dimensionality, it is difficult to determine which 

features are truly informative and which ones appear informative by chance. Large 

cohort studies such as the TCGA (The Cancer Genome Atlas) project have 

contributed greatly to our growing knowledge base, though this alone is not enough. 

Recent efforts to incorporate prior biological knowledge through the incorporation of 

pathway knowledge have been very successful for biological discovery and making 

connection to biological mechanisms. Many of these improvements have been 

achieved through the use of pathway gene sets: groups of related genes known to be 

involved together to perform some function, though some methods also utilize the 

knowledge of which genes directly interact and how they affect each other directly 

within a cell. In this thesis, I will outline the tools that I have developed for analyzing 
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cancer genomics data with the goal of improving treatment decisions and biological 

discovery. 

In Chapter 1, I discuss the effects genomics has had on our understanding and 

treatment of cancer. Computational methods can utilize molecular profiles derived 

from patient tumors to guide treatment decisions on predicted drug response. I show 

that integrating pathway knowledge into these computational methods improves 

predictions and introduce PARADIGM an algorithm for integrating genomics data 

into a graphical pathway model used as a foundation for much of my own method 

development. 

In Chapter 2, I demonstrate how pathway topology can be integrated with 

traditional biomarker discovery in our PATHMARK analysis. PATHMARK has 

successfully identified pathways that predicted drug response within cancer subtypes, 

as well as improved biological interpretability. 

In Chapter 3, I present PARADIGM-SHIFT a method for predicting the 

functional impact of mutations using genomic data and pathways. With the increased 

prevalence of tumor-specific mutation annotations due to the access to high-

throughput whole-exome sequencing, a growing number of recurrent mutations were 

identified in many different cancer types. However, understanding the impact of 

missense mutations is difficult. Building from PATHMARK, PARADIGM-SHIFT was 

developed to determine whether these driver mutations lead to a gain-of-function 

(GOF) or loss-of-function (LOF) by examining the effect of mutation on pathway 

signaling. 
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In Chapter 4, I present several surprising findings stemming from applying 

PARADIGM-SHIFT to several TCGA cohorts. PARADIGM-SHIFT was not only able 

to predict the functional impact of mutation for many highly recurrent alterations, but 

useful for identifying events that lead to the gain- or loss-of-function of a particular 

pathway. At first, known events were incorporated to look for support of a similar 

PARADIGM-SHIFT prediction across events, then I developed a method for 

discovering these events by looking for associations between the predicted functional 

impacts and alterations in genes likely to be involved in the same pathway. 

In Chapter 5, I address the need for computational tools to be accessible and 

reproducible, highlighting my work in making my tools available through the web 

and as a module within Galaxy. Galaxy is a publically available, web-based platform 

for running computational tools that enables researchers to address these specific 

needs. 

Through the course of my research, I have contributed results to many 

working groups and as co-authored several papers, in addition to my accepted 

methods paper to the ECCB ’12 edition of Bioinformatics. This list includes the many 

papers I have been involved with: 

• Subtype and pathway specific responses to anticancer compounds in breast 
cancer. PNAS February 2012  

• Whole-genome analysis informs breast cancer response to aromatase 
inhibition, Nature June 2012 

• Comprehensive molecular characterization of human colon and rectal cancer, 
Nature, July 2012 

• Comprehensive genomic characterization of squamous cell lung cancers, 
Nature, September 2012 

• PARADIGM-SHIFT predicts the function of mutations in multiple cancers 
using pathway impact analysis, Bioinformatics, September 2012 
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• Comprehensive molecular portraits of human breast tumours, Nature, October 
2012 

• Integrated genomic characterization of endometrial carcinoma, Nature, May 
2013 

• Comprehensive molecular characterization of clear cell renal cell carcinoma, 
Nature, July 2013 

• The UCSC Interaction Browser: multidimensional data views in pathway 
context, Nuclear Acids Research, July 2013 

• Comprehensive molecular profiling of lung adenocarcinoma, Nature, July 
2014 

• Multiplatform analysis of 12 cancer types reveals molecular classification 
within and across tissues of origin, Cell, August 2014 

• Comprehensive molecular characterization of gastric adenocarcinoma, Nature, 
September 2014 

• TCGA melanoma submitted 
• TCGA lower grade glioma submitted 
 

I have contributed figures to many of the papers listed here and the results will be 

covered in further detail in the following chapters. 

1.1 Precision Medicine in Cancer 

 Cancer is not a single disease. The variations from one tumor to another can 

result in vastly different responses to treatment. Due to this heterogeneity, strategies 

for determining the best treatment options available to a particular patient are 

necessary for advancing cancer treatment. With the rise of –omics data availability, 

researchers are able to probe many of the molecular facets of a particular cancer and 

use that information to guide treatment and make treatment decisions based on their 

unique molecular characteristics. As a result, newer treatments have been developed 

that target specific weaknesses of certain tumors in addition to traditional treatments, 

such as surgery, radiation therapy, and chemotherapy. This provides an alternative 
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perspective for clinicians to maximize treatment effectiveness, while also reducing 

the burden of unsuccessful treatments and side effects. 

One such therapy is the successful anti-HER2 (ERBB2) monoclonal antibody 

trastuzumab (Herceptin). Developed by Genentech, trastuzumab has shown great 

success in treating HER2 overexpressing tumors, one of the major subtypes in breast 

cancer. While, trastuzumab shows tremendous clinical efficacy in this subset of breast 

cancer patients, other patients would not benefit from this treatment, which instead 

would be a burden on those individuals. Therefore, there are tests to determine 

whether or not a patient is likely to benefit from treatment by assessing the 

overexpression or amplification of HER2. This is an example of a biomarker-guided 

therapy, in which the presence of a particular marker indicates likelihood of response. 

While trastuzumab has shown great success with certain tumors, there are 

many patients with tumors that do not have good biomarkers to inform treatment. For 

example, in lung adenocarcinoma, roughly a third of the patients are considered to be 

oncogene-negative; i.e. lack a known cancer driving GOF mutation. This could mean 

that there are no effective treatments developed that the patient will respond to or that 

no biomarker has been discovered to indicate the use of some drug that would be 

effective. In either case, there is much unknown about tumor diversity and how to 

optimally treat these tumors. In recent years, several large cohort studies headed by 

the NCI (National Cancer Institute) involving research groups all around North 

America have been at work under the TCGA (The Cancer Genome Atlas) project. 

The goal of the TCGA project has been to bring together one of the largest collections 
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of tumors across many different tumor types and to characterize them with a full suite 

of genomic assays. Pathway-based analyses have been very successful in making 

novel discoveries in the TCGA projects and many methods, including the ones I will 

outline in this thesis, have been developed and applied to these datasets. 

1.2 Driver and Passenger Events in Cancer Evolution 

As an individual ages, their somatic cells accumulate mutations, these could 

be due to exposure to mutagens or errors in biological machinery. The majority of 

these mutations are harmless, passenger mutations that merely accumulate and have 

little impact on the fitness of the cells, but occasionally a driver mutation may occur 

leading to a selection advantage for the developing tumor. As this population expands 

it acquires new passenger and new driver mutations that eventually lead to cancer. 

With such a wide array of different kinds of mutations possible, from large copy 

number amplifications, deletions, and gene fusions to small point mutations making 

the distinction between passenger and driver is a difficult challenge and a distinction 

that may not be completely black and white, but very much depend on the unique 

context of each tumor. The presence of multiple driver mutations may require a 

combination of therapies in order to suppress the tumor, and the unique variability 

within a tumor through the accumulation of passenger mutations may lead to the 

development of treatment resistance as the tumor adapts to escape cell death. 

Researchers and clinicians have only scratched the surface on understanding 

the mechanism(s) underlying driver mutations in cancer. Many rare mutations are not 

well understood and may require unique treatments to combat them. Only by 
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observing more cases and incorporating additional knowledge can we hope to 

understand and one day treat these tumors driven by rarely, but important genes. 

1.3 How Pathway Analysis Can Improve Cancer Treatment 

In real biological settings, genes do not work in isolation, but interact with 

each other to achieve some function. As such, we should not treat them as separate 

features when developing our computational methods. By leveraging these genetic 

interactions, our models are improved by taking into account information that is 

external to our data and builds upon a foundation of knowledge from past research 

studies. The type of pathway information used can vary from gene modules, or sets of 

related genes known to be involved together, to direct genetic interactions that 

describe how genes and their protein products interact with each other in a cell. 

Pathway knowledge in the form of gene-to-gene interactions can empower us 

to make discoveries by bringing in orthogonal information not present in our datasets. 

A result from the TCGA glioblastoma multiforme (GBM) characterization paper 

identified that while individual alterations in genes do not appear significantly 

recurrent, such as RAS mutations occurring in only 2% of patients, when taken 

together the total percentage of alterations across these pathways is significantly 

recurrent and occur in a majority of patients. By grouping these genes together it 

makes the result more interpretable as well, many of the genes altered in these 

pathways are involved with cellular processes that would give the tumors a selective 

advantage. For example, the RTK/RAS/PI(3)K signaling pathway is altered in 88% of 

patients allowing tumors to escape apoptosis. Without pathway knowledge many of 



	   8	  

these alterations would go undetected, pathways are a useful tool for improving 

interpretability of results and increasing statistical power of our analyses.  

1.3.1 Pathway Biomarkers of Therapeutic Response 

Overexpression is not the only mechanism for increasing the total activity of a 

gene. In the case where a treatment is effective at shutting down the function of an 

oncogene that a tumor requires to survive, patients who may respond to therapy could 

be missed if only looking for overexpression. A mutation could lead to over activity 

of the protein rather than appearing as protein overexpression, and this gain of 

function could be detected by looking at the effect of the mutation on the pathway. 

Alternatively, mutations in genes within the pathway may alter the pathway and 

might be missed by single gene approaches. Biomarkers could be expanded to look 

for pathway effects rather than single gene activities.  

1.3.2 The Challenge of Apparent Oncogene Negative Tumors 

Many of the frequent driver mutations have already been characterized and 

some of the oncogenes have successful targeted therapies to treat them, however, 

there are still many patients that do not have mutations in any of these well-

characterized oncogenes. This is a major challenge because at lower mutation 

frequencies there is much less statistical power for determining the importance or 

impact of gene mutations as well as a large quantity of these uncharacterized mutated 

genes. Discovering these genes is essential for designing therapies that will be 

effective for these patients. 
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1.4 PARADIGM an Integrative Approach for Understanding Cancer 

What matters, with a few expectations of lncRNAs is protein activity. When 

we talk about mutated genes, we are really referring to the sequelae of those genes’ 

protein products. Furthermore, protein activities are only rarely measured directly, but 

instead are inferred from surrounding measurable consequences. Take for example a 

metabolic enzyme that acts on a substrate to produce a product. One could argue that 

the only definitive way to assess the activity of the enzyme is to measure the rate of 

substrate turnover. However, if a direct measure of the disappearance of the substrate 

or appearance of the product is not available then one could look at the activity of 

other enzymes that depend on the product as their substrate to infer the activity. This 

leads to a recursive definition of the activity of the enzyme in terms of the activity of 

other neighboring enzymes. In the same way, we can infer the activity of a 

transcription factor or kinase based on the activities of other genes in their regulatory 

neighborhoods.  
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Figure 1 PARADIGM model of integrating genomic data with a pathway model to infer pathway activities.  

PARADIGM is a factor-graph-based approach for integrating diverse types of 

omics data with genetic pathways, Figure 1 [Vaske 2010]. The approach assesses the 

activity of a gene in the context of a genetic pathway diagram φ by drawing 

inferences from a dataset of observations D. The dataset can include multiple 

different types of measurements for a patient sample such as gene expression and 

genomic copy number variation. The pathway interactions used by PARADIGM come 

from a variety of pathway sources, but they are primarily constructed from: 

• National Cancer Institute Pathway Interaction Database  
• BioCarta 
• Reactome 
• Kyoto Encyclopedia of Genes and Genomes  
• Pathway Commons 

These sources were selected because they consist of highly confident sets of 

richly annotated interactions that is a necessity for running PARADIGM. Unlike many 
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pathway-based approaches, PARADIGM uses detailed information about how genes 

regulate each other, whether transcriptional, post-translational, through complex 

formation, or through a family of genes. 

 

Figure 2 Gene dogma and interaction model for PARADIGM inference.  

The modeling of these various sources of data and types of interactions is tied 

to the way the factor-graph model is represented. Figure 2 shows the two major 

components of the PARADIGM model, the gene model (a) and the interaction model 

(b). The gene model represents the various molecular states of a gene from whether or 

not it is present in the genome, transcriptionally expressed, to the expression and 

activity of the protein. Various data sources are then attached onto these nodes as 

evidence. The interaction model connects the active state of the parent node to the 
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corresponding regulatory target of the child node based on the type of interaction in 

the pathways. In the example shown, the active state of MDM2 is connected at the 

translational regulation factor for TP53. 

Before supplying the data to PARADIGM, each dataset type is first 

transformed into rank-ratios. This is done by ranking all values across all samples 

from smallest to largest and then each rank r is transformed into the range [0,1] by 

the formula (r-1)/(N*G-1) where N is the number of samples and G is the number of 

genes measured. Briefly, PARADIGM then uses a belief-propagation algorithm on a 

factor graph derived from φ to combine gene expression, copy number, and genetic 

interactions to compute inferred pathway levels (IPLs) for each gene, complex, 

protein family, and cellular process. The IPL for a gene is a signed log-posterior odds 

of the state of the gene given the observed data. Positive IPLs reflect how much more 

likely the gene is active in the tumor, while negative IPLs reflect the negative log 

probability of how likely the gene is inactive in the tumor relative to normal. 

In many cases the activity can be inferred from the direct and indirect 

regulatory influences that the gene participates. For example, PARADIGM’s inferred 

activity of a transcription factor increases if several of its targets are overexpressed 

and amplifications in the genome cannot explain their up-regulation.  By logical 

extension of this reasoning, PARADIGM may infer that a kinase is active if several of 

its targets have already been inferred to be active (e.g. the targets may be transcription 

factors with over-expressed targets). 
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1.4.1 PARADIGM Features Identify Trends Not Apparent with Gene 
Expression Data Alone 

One of the first results by PARADIGM in the TCGA ovarian paper showcased 

the advantage of the factor-graph model by identifying the up-regulation of particular 

isoforms of FOXM1 responsible for proliferation and DNA repair signaling. While, 

FOXM1 was not clearly over-expressed in ovarian the expression of FOXM1’s 

downstream transcriptional target indicated high activity of FOXM1. This pathway 

was previously undescribed in ovarian cancer. 

Also in TCGA ovarian, PARADIGM IPLs where shown to produce more 

accurate predictors of survival compared to gene expression signatures [Vaske 2010]. 

These results show that by incorporating the pathway model additional information is 

being captured by PARADIGM that is orthogonal to the information captured within 

the expression data alone. 

1.4.2 Considerations when running PARADIGM 

While PARADIGM is a powerful tool for analyzing genomic data, there are 

some caveats. Since genomic data is attached onto a pathway model, inferences 

cannot be made on genes that are not in the pathway models. This also means that 

incorrect or missing interactions will affect the inferences. This is not a major issue 

since many of the key pathways involved in cancer are relatively well studied, 

however, less studied pathways are poorly represented. 

Another less obvious consideration is that message passing, the cross-talk 

between genes in the interaction model, will lead to correlations between nearby 

features that may be driven by a relatively small number of data points. Care must be 
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taken to account for these correlations when drawing conclusions about PARADIGM 

results, otherwise results may appear much more significant than they are in reality. 

Throughout my work, I have incorporated statistical sampling to control for false 

positive conclusions resulting from such data modeling artifacts. 

1.5 Summary 

By incorporating pathways in with genomic data, statistical power is increased 

by drawing knowledge external to the dataset and guiding biological interpretation of 

results. In this chapter, I introduced the PARADIGM algorithm that lays the 

groundwork for my own research to be presented in this thesis. In the following 

chapters, I highlight my work with PATHMARK and PARADIGM-SHIFT for 

identifying pathway-based biomarkers that offer unique insight into the pathway 

differences across tumors and predicting the functional impact of mutations by 

observing the effect of mutation in pathway space. Lastly, I discuss my contribution 

to making my computational methods available for other researchers to run through 

the maintenance of the code available publically online and also usable as a Galaxy 

module. 
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2 PATHMARK 

Molecular signatures derived from omics data can offer important insight into 

guiding treatment decisions or discovering new lines of therapy. They provide a 

window into the unique tumor of each patient; however, determining the truly 

significant features from a high dimensional dataset is challenging. At the gene level 

many of the alterations across a particular cancer cohort may appear random due to 

noise, but when a broader pathway view is taken a broader set of commonalities 

between different tumors can be identified. Determining which commonalities are 

significant is key for cancer treatment.  

Certain pathway alterations are selected for within a tumor because they 

provide a survival advantage. Once an aberrant pathway is identified, researchers can 

test perturbations that disrupt these cancer pathways and hopefully disrupt tumor 

growth as well. PATHMARK aims to identify differential pathways in order to reveal 

molecular characteristics of the tumor, hopefully providing insight into how best to 

treat these tumors.  

2.1 Subtype Specific and Independent Patterns Identified by PARADIGM 
Analysis in TCGA Colorectal 

With PARADIGM, we can perform data integration across multiple data types 

and onto a pathway model. Studies mentioned in the previous chapter illustrated that 

PARADIGM improved survival prediction in ovarian cancers and revealed an 

uncharacterized activation of the FOXM1 transcription factor signaling pathway. In 

colorectal cancer (CRC), copy number, gene expression, methylation and pathway 

data were integrated using PARADIGM. The analysis showed a number of new 
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characteristics of CRC. For example, despite the diversity in anatomical origin or 

mutation levels, nearly 100% of these tumours have changes in MYC transcriptional 

targets, both those promoted by and those inhibited by MYC, Figure 3. These 

findings are consistent with patterns deduced from genetic alterations and suggest an 

important role for MYC in CRC. The analysis also identified several gene networks 

altered across all tumour samples and those with differential alterations in 

hypermutated versus non-hypermutated samples. 

 

Figure 3 PARADIGM IPL heatmap for CRC.  
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 Some of the trends on the heatmap for CRC are extremely striking, so 

identifying them is a simple task, however some of the smaller pathways are difficult 

to assess based on clustering. By utilizing pathway information to select pathway 

biomarkers, PATHMARK was developed to identify differential features that clustered 

in a region of the network. This would help guide annotation of important features 

outputted by PARADIGM since several features would often drive the selection for 

pathway biomarkers. 

2.2 The PATHMARK Method 

 

Figure 4 Overview of the PATHMARK methodology.  

In order to identify significantly differential subnetworks from PARADIGM, 

PATHMARK was developed to select groups of pathway features that had high 

differential scores and were close in pathway space, Figure 4. This method was 

developed in conjunction with Ted Goldstein, Steve Benz, and Charles Vaske in order 
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to provide a visual representation of the significant subnetworks generated by 

PARADIGM. Since PARADIGM IPLs are calculated for every pathway feature in the 

pathway, a selection of these features can be performed. First differential IPLs are 

calculated from the PARADIGM IPLs, similar to standard differential analysis, by 

comparing two groups of samples within a cohort. Such comparisons could include 

whether a sample is in a subtype versus not, or was resistant versus sensitive to drug 

treatment. A few different differential analyses have been implemented, such as 

significance analysis of microarrays (SAM), linear models for microarray data 

(LIMMA), and t-test. SAM is used most frequently since it has a correction factor for 

genes that have high differential with small variance, which can lead to over-inflated 

differential scores. LIMMA was updated to handle RNAseq count data, so it is also a 

popular choice when that data is available [Ritchie 2015]. Once differential scores are 

calculated for each PARADIGM pathway feature, PATHMARK performs a selection 

on the entire pathway to select subnetworks. This is done by keeping any edges that 

have source and target nodes with differential scores that exceed some threshold. This 

threshold is set by two parameters, the filtering parameters, which define the number 

of standard deviations above the mean value across all differential scores that the 

nodes have to exceed in order to be included. For example, parameters of 0 and 0.5 

would mean that at least one of the two nodes would need to exceed 0.5 times the 

standard deviation over the mean, while the other node just needs to be above the 

mean. Typical parameter settings include (0.0, 0.0) and (1.0, 1.0) depending on the 

size of the resultant subnetwork desired. Since this selection considers pairwise nodes 
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that have an interaction, PATHMARK typically enriches for regions with multiple 

data points supporting the conclusion that the pathway is differentially altered. 

Two additional filtering steps are usually taken before viewing the final result 

to further refine the subnetwork result. The first filtering step removes “complex” 

pathway entities that do not have at least half of their gene components. This filtering 

is performed because “complex” pathway entities derive their entire IPL from the 

surrounding network, since there is no data directly associated with a “complex.” This 

potentially leads to long chains of these “complexes” that do not reveal anything 

meaningful since the values are driven by a single differential gene. Important genes 

could also be missed by PATHMARK, since a hard threshold is used for selection. To 

account for this another filter is applied to pull in any regulators that have at least half 

of their targets in the subnetwork (with at least 4 targets). This helps keep regions of 

the subnetwork connected, when hub genes do not make the cutoff. 

To assess the significance of the PATHMARK network, the size of the real 

network is compared to that of a background distribution of PATHMARK solutions 

with permuted data. Since PARADIGM naturally propagates signal through the 

network, it would not be a fair comparison if this structure was broken in the 

PATHMARK nulls. Therefore, the permutation process is performed prior to running 

PARADIGM in which gene labels are permuted and then the null cohorts are run 

through PATHMARK. This asks the question of how likely a subnetwork of the 

observed networks size could have been observed if the genes interact randomly with 

each other with a similar network structure. The size of the network can be defined as 
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the number of nodes in the entire network, the number of edges in the entire network, 

the number of nodes in the largest component, or the number of edges in the largest 

component. The number of nodes in the largest component is sufficient for 

determining significance and is typically the one used as it is the most intuitive when 

viewing the main component of the PATHMARK result. 

Recently and in addition to significance assessment, robustness analysis was 

included to allow us to determine how robust regions of the PATHMARK solution are. 

This is performed by performing a bootstrap analysis in which bootstrap cohorts are 

created by sampling cohorts of similar size, but allowing for resampling (obtaining 

the same sample twice). The concept is that our data set is the closest set we have to 

the true population, so by resampling we look at the stability of certain regions of the 

complete PATHMARK solution. Nodes and edges can then be annotated with the 

proportion of times they were included in the bootstrapped PATHMARK solution to 

estimate the robustness of the subnetwork selection. 

2.3 Pathway Signatures Identify Familiar Networks Related to Breast Cancer 
Subtype 

We used the network analysis tool PARADIGM and newly developed 

PATHMARK to identify pathway-based mechanisms that underlie subtype-specific 

responses. PARADIGM was used with copy number and transcription data to 

calculate integrated pathway levels (IPLs) for 1441 curated signal transduction, 

transcriptional, and metabolic pathways. We compared IPLs for cell-lines and 

primary breast tumors using data from The Cancer Genome Atlas (TCGA) project 
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and found a general concordance between transcriptional subtype and pathway 

activity across the two cohorts. This subtype-specific pathway activity likely explains 

much of the observed subtype specific responses. Mechanistic interpretation of IPLs 

for 1441 pathways is complicated by the overlapping elements in many of the curated 

pathways. We overcame this complication by merging the 1441 curated pathways 

into a single “SuperPathway” in which redundant pathway elements are eliminated. 

This approach enabled us to identify SuperPathway subnets that differed in activity 

between transcriptional subtypes through a newly developed analysis of PARADIGM 

IPLs called PATHMARK. PATHMARK identifies regions of the network, or 

subgraphs, with differential IPLs connected in cluster.  
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Figure 5 PATHMARK subnet heatmaps for four different breast cancer cell line subtypes.  

As an example, comparison of subnet activities between basal cell lines and 

all others in the collection identified a network comprised of 1104 nodes (e.g., 

proteins, protein complexes, or cellular processes) connected by 1,242 edges (e.g., 

protein– protein interactions) between these elements. Several subnetworks were up- 

or down-regulated in the subtype-specific SuperPathway networks. Figure 5A, for 

example, shows up-regulation of an ERK1/2 subnetwork controlling cell cycle, 
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adhesion, invasion, and macrophage activation. The forkhead box M1 and DNA-

damage subnetworks also were up-regulated markedly in the basal cell lines. The 

claudin-low network showed up-regulation of many of the same subnetworks, as well 

as up-regulation of a MYC/Myc-associated factor X (MAX) subnetwork associated 

with metabolism, proliferation, angiogenesis, and oncogenesis, Figure 5B. 

Comparison of the luminal cell lines with all others showed down-regulation of an 

activating transcription factor 2 network, which inhibits tumorigenicity in melanoma, 

as well as upregulation of forkhead box A1 (FOXA1)/forkhead box A2 (FOXA2) 

networks that control transcription of estrogen receptor- regulated genes and are 

associated with good prognosis luminal breast cancers, Figure 5C. ERBB2AMP 

subnetworks were similar to those for luminal cells; this similarity is not surprising 

because most ERBB2AMP cells also can be classified as luminal. However, Figure 

5D shows down-regulation of a β-catenin (CTNNB1) network in ERBB2AMP cell-

lines; up-regulation of this network has been implicated in tumorigenesis and is 

associated with poor prognosis.  

2.4 Differentiating Drug Response in Breast Cancer Cell Lines and Tumors 

Surprisingly the PATHMARK analysis of differential drug responses among 

the cell lines also revealed subnet activities that provide information about 

mechanisms of response. The molecular subtypes of breast cancer are very distinct 

with differing prognosis and molecular features. Response to therapy is also highly 

correlated with subtype. Certain subnetworks within the subtype-specific 

PATHMARK results correctly predict response to therapy. For example, basal cell line 
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sensitivity to the DNA-damaging agent cisplatin was associated with up-regulation of 

a DNA-damage response subnetwork that includes ataxia telangiectasia mutated and 

checkpoint kinase 1 homolog, key genes associated with response to cisplatin, Figure 

6A. Likewise, ERBB2AMP cell line sensitivity to geldanamycin [an inhibitor of heat-

shock protein 90 (HSP90)] was associated with up-regulation of an ERBB2-HSP90 

subnetwork, Figure 6B. This observation is consistent with the known ERBB2 

degradation induced by geldanamycin binding. On the other hand, AURKB pathway 

down-regulation in ERBB2AMP cell-lines indicated resistance to treatment with VX-

680 [an inhibitor AURK], Figure 6C. 

 

Figure 6 PATHMARK subnetworks are predictive of drug response in breast cancer cell-lines.  

In the article Whole-Genome Analysis Informs Breast Cancer Response to 

Aromatase Inhibition, a similar finding was noted in breast cancer patients 
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undergoing neoadjuvant aromatase inhibition. The PARADIGM-inferred pathway 

signatures were further used to derive a map of the genetic mechanisms that may 

underlie treatment response. In addition, PathScan was used to assess significant 

associations between mutations and pathways with aromatase inhibitor response. 

PATHMARK pathway biomarkers selected with high association with Ki67 biomarker 

status were consistent with the PathScan results, and among the largest of the hubs in 

the identified network were a central DNA damage hub with the second highest 

connectivity (55 regulatory interactions; 1% of the network) and TP53 with the 14th 

highest connectivity (26 connections; 0.5% of the network). Additional highly 

connected hubs identified in order of connectivity were MYC with 79 connections 

(1.4%), FYN with 45 (0.8%), MAPK3 with 43, JUN with 40, HDAC1 with 40, SHC1 

with 39, and HIF1A/ ARNT complex with 39. As PATHMARK and PARADIGM do 

not integrate mutation data into the analysis, this approach provides orthogonal 

information to mutation analysis. Thus, PATHMARK which used genomic data and 

pathways without mutation data were able to identify the same significantly altered 

pathways relevant for aromatase inhibitor response. 

2.5 Summary 

As described in many of the results discussed in this chapter, PATHMARK is a 

useful tool for giving a broad overview of which pathways are altered in cancer 

cohorts. The networks obtained from PATHMARK often have features that are 

revealing of cancer disease mechanisms and of treatment response. However, from 

the PATHMARK result it is not clear which differentially activated or deactivated 
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pathways are essential to the tumors survival (i.e. drivers), versus those that are a 

consequence of an upstream effect (i.e. passengers). To answer questions about what 

effects mutations might have on pathways and their connections, I developed 

PARADIGM-SHIFT, which will be discussed in further detail in the next chapter. 
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3 PARADIGM-SHIFT 

The	  major	  mechanism	  by	  which	  cancer	  arises	  is	  through	  somatic	  

mutations.	  These	  mutations	  can	  lead	  to	  alterations	  in	  gene	  regulation	  as	  well	  as	  

changes	  in	  protein	  structure	  and	  function.	  Individual	  tumors	  can	  contain	  

hundreds	  to	  thousands	  of	  mutations.	  It	  is	  critical	  to	  distinguish	  mutations	  that	  

have	  an	  important	  role	  defining	  the	  cancer	  –	  driver	  mutations	  –	  from	  mutations	  

that	  are	  unimportant	  to	  the	  tumor	  –	  passenger	  mutations.	  Differentiating	  driver	  

and	  passenger	  events	  is	  essential	  for	  understanding	  cancer	  disease	  mechanisms,	  

which	  can	  help	  guide	  treatment	  decisions	  as	  well	  as	  identify	  novel	  targets	  for	  

treatment.	  Genomic	  probing	  with	  technologies	  such	  as	  expression	  arrays	  and	  

high-‐throughput	  RNA	  sequencing	  provide	  insight	  into	  changes	  in	  gene	  

regulation	  in	  cancer,	  but	  determining	  the	  tumorigenic	  role	  of	  a	  coding	  mutation	  

is	  less	  clear.	  Genomic	  data	  coupled	  with	  pathway	  information	  provides	  insight	  

into	  the	  functional	  impact	  of	  a	  mutation	  to	  particular	  genes.	  In	  this	  section,	  I	  

introduce	  my	  method	  PARADIGM-‐SHIFT,	  and	  discuss	  how	  it	  is	  used	  to	  predict	  the	  

functional	  impact	  of	  mutation	  –	  gain-‐of-‐function	  (GOF)	  or	  loss-‐of-‐function	  (LOF)	  

that	  provides	  additional	  mechanistic	  understanding	  to	  driver	  mutations	  within	  

certain	  cancer	  tumors.	  
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Figure 7 Anticipated pathway influences for gain- and loss-of-function mutations.  

PARADIGM-‐SHIFT	  is	  a	  mutation	  prediction	  method	  based	  on	  integrated	  

pathway	  analysis	  to	  discriminate	  LOF,	  neutral,	  and	  GOF	  mutations.	  Utilizing	  the	  

set	  of	  regulatory	  interactions	  annotated	  for	  a	  given	  gene,	  it	  can	  detect	  a	  

discrepancy	  in	  the	  downstream	  effects	  of	  an	  altered	  gene	  compared	  to	  what	  is	  

expected	  from	  its	  upstream	  influences,	  Figure	  7.	  Intuitively, if a mutation causes a 

LOF to a focus gene (FG) then it may create a particular signature on that FG’s 

pathway neighborhood. In the case of a LOF event, the regulatory input to the FG 

would indicate that the gene should be turned on at the transcriptional and/or post-

transcriptional levels. For instance, a transcription factor and kinase that regulate 

different parts of the FG’s activity may themselves be active given the data on a 

particular sample. However, when one inspects the sample’s data for neighboring 

genes downstream of the FG one would find evidence that the FG is not active. For 

example, FG itself may be a transcription factor that activates several target genes all 

of which have low expression levels in the sample. In the GOF case, the opposite 
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situation would occur where the downstream targets are consistent with a higher 

activity of the FG than what would be expected from the FG’s regulatory inputs. 

Feedback circuitry in the cell may accentuate the difference in upstream and 

downstream activity information. Cells may detect that the function of the FG is lost 

and signal through feedback circuitry in an attempt to “rescue” FG by activating its 

upstream regulatory inputs. When this happens, the upstream signals can become 

even more strongly suggestive of high levels of FG’s activity even though no 

evidence of that activity is present downstream. A method that leverages such 

discrepant pathway information surrounding the FG may have a chance of predicting 

the consequences of a mutational event and distinguish cases in which they are 

neutral, loss-of-function, or gain-of-function.	  In this chapter, I will show that a score 

based on	  this discrepancy is highly predictive of the presence of a mutation and that 

the directionality of this discrepancy also reflects the gain- or loss-of-function in a 

gene. 

This additional information could be essential in guiding treatment decisions 

and determining additional therapeutic targets in the future. In some cases genes are 

known to have cases of both gain- and loss-of-function mutations, such as in 

NOTCH1 discussed later in this section; in such a situation it is possible that a 

targeted therapy given to counteract a suspected gain-of-function mutation would 

actually lead to worse outcome in a patient whose tumor mutation actually produced 

loss-of-function. Understanding the mechanistic consequence of a mutation is as 
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important as identifying driver mutations. Further discovery of new gain-of-functions 

could also lead to the development of new targeted therapies. 

Application of my method to a set of known driver mutations reveals that 

there is a significantly strong signal for loss- and gain- of functional mutations in the 

surrounding network, demonstrating the sensitivity of this approach. In addition, 

when applied to the negative control of passenger mutations, the method predicts 

little pathway impact, indicating this approach also has high specificity. 

A comprehensive cancer survey such as that being generated by TCGA 

uncovers numerous genomic events that are a mix of both causal, driver events and 

incidental passenger events that accumulate as a result of dysregulated genomic 

surveillance and cell proliferation with clonal expansion over time. Exome and 

whole-genome sequencing uncover recurrent mutational events in a few genes and 

many low frequency events in many others. Importantly, many of the low frequency 

genes are known to be functionally important in the tumors in which they arise. For 

example, while BRAFV600E is common in melanoma, it occurs in only 3% of non-

small cell lung cancer, but is clearly a driver when present in both of these tumor 

types [Dankort 2007]. Of the many significantly recurrent mutations in various cancer 

types most are not well understood, hopefully pathway-based methods like 

PARADIGM-SHIFT can shed light on some of these. 

3.1 Orthogonal Methods for Assessing Mutations 

Several computational methods for predicting the functional importance of 

mutations exist. These methods often use the frequency of a mutated gene across a 
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cohort, the location of a mutation in the gene, whether the mutations are silent or non-

silent, frame-shifting, potentially protein domain altering, found in more 

evolutionarily conserved regions of the peptide sequence, or cluster together in the 

protein sequence or structure. While these existing methods have shown tremendous 

success, they each have certain limitations that impact their generality. For example, 

some methods must be trained from external datasets such as from the COSMIC 

database that introduces possible circularity to the analysis and biases the discovery 

of genes whose mutational impact has already been characterized. 

SIFT [Ng 2003] and MutationAssessor [Reva 2011] classify the functional 

impact of mutations based on sequence conservation at the positions in which these 

missense mutations occur. If a particular position were highly preserved across many 

normal genomes, a mutation there would be predicted to be highly impactful. This 

methodology functions upon the premise that highly conserved regions are important 

for normal protein function, so that a disruption is negatively selected for in the 

normal setting. Since driver mutations are likely to result in a significant change in 

function these methods take advantage of the fact that these mutations are more likely 

to fall in a conserved region to account for that large change in function. PolyPhen-2 

[Adzhubei 2010] similarly predicts the functional impact of individual events, but 

includes additional biological predictions external to SIFT. By taking into 

consideration features related to the local sequence of the mutation and structural 

information trained against a library of known damaging alleles of human disease, 

Polyphen-2 was able to improve performance over SIFT. 
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The genomic landscape undergoes a plethora of alterations on the path to 

carcinogenesis from copy number gains and losses to mutations. In order to make 

sense of the molecular mechanisms of cancer it is essential to distinguish the driver 

events from a “sea” of passenger events. Since the impact of missense mutations is 

less obvious to predict, many approaches have been developed to distinguish driver 

or passenger mutations. Because of positive selection pressure, we can identify driver 

mutations as occurring at a higher frequency than expected by chance or based on 

biological information such as predicted impact. 

Methods such as MutSig [Getz 2007] take advantage of positive selection 

pressure within tumors to detect driver events. Genes are scored by comparing the 

frequency of mutations to a passenger mutation rate estimated by excluding known 

driver mutations. Special considerations are also taken within the null model to 

handle genes of different size, genes of larger size are more likely to have a mutation 

occurring at random, and differences in mutation rate due to locations in the genome, 

based on GC content or proximity to replication fork machinery. Passenger mutation 

rate is estimated by looking at mutations in non-coding gene regions, however this 

estimation is not perfect since there are non-coding genes as well as regulatory 

mutations that can also be positively selected for during carcinogenesis. The 

significantly mutated genes are determined by setting a threshold based on the false 

discovery rate. 

By combining the advantages of recurrence based methods and functional 

impact based methods, OncodriveFM [Gonzalez-Perez 2012] is able to filter out some 
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of the more recurrent passenger mutations that have low predicted functional impact 

and retain lowly recurrent driver mutations with a high functional impact. Many 

passenger mutations are often called significant because of various biases towards 

mutation, such as proximity to the replication fork, while rarer driver mutations are 

missed because of a lack of statistical power in recurrence methods. OncodriveFM 

weights each mutation based on their functional impact score to create a combined 

score based on functional impact and recurrence. 

There are also methods that take advantage of prior knowledge about related 

genes in the form of pathways to predict driver mutations. MEMo [Ciriello 2012] and 

Dendrix [Vandin 2011] leverage pathway information to call drivers by identifying 

subnetworks or related gene-sets with genomic events that are highly mutually 

exclusive. The idea is that alterations in a single gene in a pathway is sufficient to 

perturb it, therefore, mutual exclusivity is often observed for genes affecting the same 

pathway since once one hit is achieved a second is not necessary for the cancer. 

HotNet [Vandin 2010] similarly identifies a subnetwork of mutations, but by 

identifying clusters of mutated genes through a heat diffusion algorithm. 

Gene signature-based approaches train machine-learning classifiers to 

recognize the presence and absence of mutations from molecular features such as 

gene expression data [Mooney 2011]. These methods can be applied to any number of 

genomic perturbations including mutations, focal copy number gains or losses, or 

methylated promoters. They can be applied to a variety of both coding and non-

coding mutations and thus are potentially capable of detecting whether mutations in 
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regulatory regions have functional significance. Gene signatures are first computed 

from a training set of data in which either a subset of data or an external dataset is 

used. Genes with expression levels that are differentially associated with the presence 

(compared to the absence) of a mutation are candidates for inclusion in the gene 

signature using any number of a variety of univariate and multivariate machine-

learning and feature selection approaches. One major obstacle in this work is the 

identification of signatures that truly are robust enough to generalize from one dataset 

to another. Researchers have faced the difficulty of combining various microarray-

based and now high-throughput sequencing based platforms together as well as the 

inherent stochastic nature of gene expression. 

To date no existing method makes use of genetic pathways to interpret the 

functional consequences of a mutational event. However, the availability of multi-

dimensional datasets for cancer samples like those generated by the TCGA project 

make such an endeavor possible. If our pathway knowledge surrounding a particular 

gene is complete enough and we have enough data to provide information about the 

activity of neighboring genes, then we can use that knowledge to measure the 

pathway consequences of a mutation.  

3.2 The PARADIGM-SHIFT Method 

PARADIGM-SHIFT [Ng 2012] takes advantage of many of the same 

principles used in the methods described above to predict not only driver from 

passenger events, but also to predict whether mutations are likely to increase the 

function, gain-of-function (GOF), or decrease the function, loss-of-function (LOF), of 
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the gene. This is achieved by estimating the functional impact of a mutation on the 

pathway by using PARADIGM [Vaske 2010]. In cases of LOF or GOF mutation, 

there would be conflicting signal from the genomic data upstream of a mutation and 

downstream of a mutation. For example, in the case of a LOF the upstream regulators 

may be trying to turn the gene back on, but since the missense mutation renders the 

protein non-functional the downstream targets are not active. These impact 

predictions, or shift scores, can be calculated for each sample regardless of mutation 

status and a LOF or GOF call is determined if there is a high recurrence of low or 

high shift scores in the mutated samples in comparison to the non-mutated samples. 

Since genomic data and pathway data is utilized instead of sequencing data, 

PARADIGM-SHIFT provides an orthogonal view to traditional mutation analyses. 

 

 

Figure 8 Discrepancies in pathway signals can be isolated through PARADIGM.  
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The core of our approach estimates the shift in each tumor sample for each 

focus gene (FG) using two runs of the original PARADIGM algorithm, Figure 8. In 

the downstream run, the FG is left connected to a neighborhood of its downstream 

targets while upstream regulators are disconnected. In the upstream run, a 

neighborhood of upstream regulators is left connected to FG but all downstream 

targets are disconnected. As with PARADIGM, all variables are trinary representing 

whether a feature is more active in the tumor relative to normal, more inactive in the 

tumor than normal, or the same level in tumor as in normal. The shift score then 

computes the difference between the inferred activities of FG determined in the 

downstream run from those determined in the upstream run. 

 

Figure 9 Detailed diagram of the PARADIGM-SHIFT method.  

Since PARADIGM-SHIFT relies on network information in order to call 

significant impacts, sufficient pathway knowledge is required in order to identify a 

result, where there may be one. Most of our networks are derived from large pathway 

databases as described in the first chapter, but in some cases smaller constituent 

pathways of interest are pulled in for prediction on certain mutations. In addition to 
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genomic data that PARADIGM needs in order to execute and a set of PARADIGM 

parameters trained on the network and genomic data, PARADIGM-SHIFT requires 

mutation data that contains information on which samples have mutations in any 

genes of interest. Figure 9 illustrates the steps PARADIGM-SHIFT takes in order to 

calculate the shift scores for each sample. First, feature selection is employed to 

determine the set of neighboring upstream and downstream features in the model. 

Typically, features are selected by including features based t-statistics in the top 84th 

percentile, or approximately above a standard deviation over the mean. The t-

statistics are calculated using a standard t-test comparing two samples with unequal 

variance and size on the expression ensuring that the underlying data of the features 

selected in the neighboring networks differentiate alteration status. Once the 

neighboring networks have been selected the inferred activity of the upstream and 

downstream can be determined through two PARADIGM runs; one where only the 

connections with the upstream regulators are retained (R-run) and one where only the 

connections with the downstream targets are retained (T-run). Finally, the shift score 

is then calculated as the difference between the inferred activity of the downstream 

run and the inferred activity of the upstream run. 

The accuracy of the trained model can be assessed by using the absolute shift 

score as a classifier to predict the presence of mutation in a cross-validation setting. 

In the case in which a mutation has a functional impact on the pathway, I would 

expect to observe high absolute shift scores, higher discrepancy between upstream 

and downstream signal, in mutant compared to non-mutant samples. If the model is 
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predictive of a functional impact, then PARADIGM-SHIFT then makes a prediction of 

LOF or GOF based on the distribution of shift scores for the mutated and non-

mutated samples, negative shifts for LOF and positive shifts for GOF. The strength of 

the predicted impact, which I define as the mutant-separation, is quantified using a t-

statistic computed from the distribution of shift scores for the mutant contrasted 

against the non-mutant samples. The significance of the mutant-separation is 

computed by comparing the observed to a background model determined using the 

same fixed network model, but where gene labels are permuted for the input genomic 

data. A rigorous description of the procedure is given in the next section. 

3.2.1 Detailed Description of the PARADIGM-SHIFT Score 

 

We derive a Pathway Shift (PS) score based on the intuition of comparing the 

observed downstream consequences of a gene’s activity to what is expected from its 

regulatory inputs. The PS score has the form: 
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where the observed activity for f is derived from the downstream targets and the 

expected activity for f is derived from the upstream regulators. The caveat of course is 

that we never get to truly “observed” gene f’s activity so we must infer it from the 

activity of downstream targets. As implied above, the estimation of such an activity is 

necessarily recursive, requiring us to first estimate the activity of the downstream 
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targets for f before we can predict f’s own activity. The computation is naturally 

framed as an inference problem over a set of interdependent variables, some of which 

are hidden. In the last couple of decades, efficient procedures have been developed to 

compute the probabilities of a system of variables connected together in a 

probabilistic graphical model [Friedman 2004]. 

To estimate pathway-neighborhood dependent inferences on focus gene f’s 

activity, we restrict our view of the data to subsets of features in φ. If R⊂φ is the set of 

regulators of f and T⊂φ is the set of targets, then let D(R), D(T), and D(f) refer to the 

data observed for the regulators, targets, and the focus gene f respectively. Likewise, 

the interactions are restricted to the subset of features in the focus gene’s 

neighborhood and denoted φ(T) to represent the pathway features and interactions 

involving only the targets to each other and to f itself. Similarly, φ(R) represents the 

same for the upstream regulators. With these definitions in hand we write the PS 

score as the following log ratio of two constituent likelihood-ratios: 
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where LR(Y|xa,Z) is defined as P(Y|xa,Z)/P(Y|x¬a,Z), the likelihood ratio computed 

over one possible alternative value for X, xa, compared to the probability of the other 

two possible values – less active in tumor xi and similarly active in tumor x0 – the 

combined event },{ 0xxx ia =¬  is written for short. Note that only the expected term in 
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the denominator contains the entry D(f), which represents the actual data for the focus 

gene of interest. This reflects the assumption that the data on the focus gene provides 

evidence for the cis-regulatory state of the gene and so is included among the 

regulators for f. Note that if data on the direct activity for f were instead available, 

such as phosphorylation status or enzymatic activity, then that data could be 

considered for inclusion into the numerator term for the observed targets. The 

quantity in equation (2) reflects the degree to which the observed data for the targets 

is consistent with high activity of the focus gene relative to the observed data for the 

regulators and the gene in question. There was a typo of a
fx
−  in the denominator in the 

original publication, which has now been corrected. 

Further expansion of the PS score reveals the method by which it can be 

computed using the original PARADIGM algorithm. Application of Bayes Rule 

gives: 
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where prior is the log-prior-odds and has the same form as the first two terms in the 

equation except that all entries involving D are dropped. Another application of 

Bayes Rule would show that the first two joint probability ratio terms are equivalent 

to the LPO that the gene is active given either the state of the downstream targets 

(left-hand term) or the upstream regulators (right-hand term). The advantage of 

writing the joint probabilities in this form shows explicitly those terms of the form 
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P(D, x | φ) that are each efficiently computed with a message-passing belief 

propagation procedure on the underlying factor graph encoded by φ. The message-

passing procedure takes care of summing out all of the hidden variables present in φ – 

the states of complexes, cellular processes, and the activities of all other genes other 

than f. The computation implements an iterative form of the Expectation-

Maximization procedure that sequentially updates all variables by forming a running 

average until either a convergence tolerance of 10-9 is reached or 10,000 maximum 

iterations are exceeded. The code is freely available through the libDAI C++ open 

source library [Mooij 2009]. In the R-run version of PARADIGM, the LPO shown in 

Equation (3) and its corresponding log-prior odds are computed in two separate full 

factor graph convergence runs. Likewise, the T-run involves two separate EM runs to 

compute its two terms in Equation (3). Thus, in total, the computation time involved 

to compute the PS requires four EM convergence runs, but each task is run on a 

reduced pathway representation involving only the neighborhood of the focus gene. 

Thus, the computation time to calculate a PS for an entire dataset requires 2k 

PARADIGM runs where k is the number of mutated genes in the cohort. 

In practice we use the inferred pathway levels (IPLs) from PARADIGM for 

the computation of the PS. Specifically, we set PS(f) = IPLT(f)-IPLR(f), where 

IPLT|R(f) is the IPL derived from the T- or R-run. The IPL is a signed LPO that 

always puts the highest probability state for f in the numerator. If the inactive state is 

in the numerator the IPL gives the negation of the LPO. This quantity is similar to 

Equation (3) except that the highest probability states determined in each run are 
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contrasted. In the case where the active form of the gene is the most probable in each 

case the two formulas are equivalent. Finally, we found that a transformation of the 

PS score to a Z-score provided better overall results. Each gene’s local neighborhood 

could have a certain bias to lean toward either positive or negative scores. To account 

for this we constructed 100 random samples for each gene by shuffling data tuples 

around the SuperPathway. This effectively associated random data with each gene’s 

neighborhood. PS scores were calculated for each of these 100 samples and each PS 

was then normalized by subtracting the mean and dividing by the standard deviation 

determined from this simulation. 

For computational efficiency, we use a local neighborhood around each gene 

rather than the entire network. Using the local neighborhood provides a good 

approximation of the full network as genes far away are expected to exert a 

diminishing influence on the inference of the focus gene. We tested including 

neighbors at distances 1, 2, and 3 and full for the positive controls. The empirical 

results indicate that the distinction degree increases only moderately after distances of 

two. To build the neighborhood, we traverse the graph and include any pathway 

features when there is at most one other intervening protein between the feature and 

FG. All interactions between the selected features were included in the neighborhood. 

If a protein was present in both the upstream and downstream neighborhoods, due to 

feedback circuitry, it was excluded from both the R- and T-runs. 
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3.2.2 Initial Findings on Published TCGA Datasets 

We downloaded gene expression, copy number, and exome-capture mutation 

data for patient tumor samples from TCGA data coordinating center for 185 

glioblastoma multiforme (GBM) samples on 7/28/12, 354 ovarian serous 

adenocarcinoma (OVCA) samples on 7/28/12, 219 colorectal carcinoma (CRC) 

samples on 7/28/12, 184 lung squamous carcinoma (LUSC) samples on 10/26/12, and 

525 breast carcinoma (BRCA) samples on 9/24/12. Datasets for each tissue-specific 

tumor type were used separately as the dataset D for inferring mutation PARADIGM-

SHIFT impact. We formed a comprehensive cellular pathway diagram for φ by 

merging together several pathway sources including NCI-PID [Schaefer 2009], 

Reactome [Matthews 2009], and BioCarta [Nishimura 2001] and then combining 

them into a superimposed pathway henceforth referred to as the “SuperPathway.” We 

have previously described the construction of the SuperPathway for application to the 

analysis of a set of breast cancer cell lines and their response to various therapeutic 

agents [Heiser, Sadanandam et al. 2011]. 

We applied PARADIGM-SHIFT to a set of three well-characterized genes 

including RB1, TP53, and NFE2L2. The retinoblastoma (RB1) gene is a well-known 

tumor suppressor gene and plays a crucial role in the control of the G1àS transition 

of the cell cycle. We applied our method to predict the functional consequences of 

mutations to RB1 in the GBM cohort. Neighborhood selection identified six proteins 

in the upstream neighborhood of RB1 and ten downstream targets. Of these, 6 out of 
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9 samples received negative PS scores consistent with RB1’s characterized role as a 

tumor suppressor.  

We asked whether the distribution of PS scores were significant by comparing 

the PS score associated with the mutated samples to the PS scores associated to those 

samples without reported RB1 mutations. It is important to note that our method 

makes no use of the mutation calls in any way when deriving the score. While most 

of the samples received negative PS scores, there were a significant proportion of the 

mutated samples with shifts near the mean level seen in the non-mutated cases. These 

may reflect the set of samples harboring neutral passenger mutations that happen to 

land in the RB1 gene. It would be interesting to compare the clinical outcome of these 

RB1 mutant cases to those with low PS scores to see if their tumors are less 

aggressive.  

While a t-statistic indicates that the distributions of the PS scores are 

appreciably lower for the mutants compared to the non-mutants, we performed a 

permutation analysis to assess whether the observed t-statistic was significant using a 

non-parametric approach. We formed random neighborhoods for RB1 by assigning 

data tuples from random genes to the regulators and targets of RB1. Using 1000 

different sets of randomly assigned neighbors the entire procedure was repeated and 

the difference between the mutant and non-mutant distributions were computed. This 

test indeed revealed that the lower PS scores observed for the mutant RB1 samples 

were significantly lower than the non-mutants relative to those differences seen in 

these random controls. 
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TP53 is the most commonly mutated gene in cancer. It is a tumor suppressor 

and in most cases exerts a dominant negative action over the wild-type allele. In other 

cases, deletion of the gene resulting from loss of heterozygosity (LOH) or double 

somatic events are observed as early and frequent events in cancers spanning many 

tissue types. We compared our algorithm’s ability to predict the functional impact of 

TP53 mutations in GBM and OVCA both of which have been published by the 

TCGA consortium. In GBM nearly a third (48) of the samples have a mutation in 

TP53. Of these, 19 had negative PS scores, 9 had positive PS scores, and the rest had 

near-neutral as determined by permutation analysis. In OVCA, the majority (67%) of 

the samples had a reported TP53 mutation. Importantly, it is believed that nearly 

100% of the samples harbor such a mutation even though less than 100% were 

detected (Consortium 2011). The difference in PS scores for mutated versus non-

mutated were again found to be significantly left-shifted. 

3.2.3 Concordance with Recurrence-based Methods 

To gauge the general agreement with predicting functional impacts for 

mutated genes that are considered to be driver rather than neutral passenger events, 

we compared our approach to MutSig [Getz 2007]. MutSig considers the frequency of 

the mutation, the location of the mutation in the gene, and several other features to 

calculate a significance score relative to an estimated sample-specific background 

mutation rate. We collected all MutSig scores for those genes that had representation 

in the SuperPathway and that had at least three mutations in GBM. We used the 

absolute value of the average of the PS scores and dividing them into two groups 
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according to whether they were associated with significant or insignificant MutSig 

scores, Figure 10A. The results show a clear enrichment for higher absolute PS scores 

(either indicative of GOF or LOF) for those genes with significant MutSig scores 

compared to those with insignificant scores. 

 

 

Figure 10 PARADIGM-SHIFT predictions concordant with MutSig.  

To determine a rough estimate for the specificity of our approach, we 

collected six of the genes that received insignificant MutSig scores on which to 

perform the aforementioned permutation analysis. We plotted the PS scores from the 

permuted samples and found that in each of the six cases, the calculated PS t-statistics 

fell well within the range seen in the permuted controls, Figure 10B. We find that 

these mutations in genes with low MutSig scores are associated with PS scores that do 

not discriminate between mutant and non-mutant samples, consistent with the 

assumption that many of these mutations represent passenger events. Thus, our 

pathway-based method shows a degree of confirmation to a purely sequence-based 

analysis of mutational events. 
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As discussed in a previous section, most methods to assess significance of 

mutations in a given gene rely heavily on the prevalence of mutations across a clinical 

cohort with shared characteristics (e.g. early stage colon cancer). However, some rare 

events are of paramount importance to the patients in whom they occur, such as in the 

Ras-MAPK pathway in GBM. To determine novel impactful events, we applied 

PARADIGM-SHIFT to all of the mutated genes in GBM, OVCA, and LUSC. Our 

analysis identified probable gain-of-function mutations in MAPK1 based on only 

three out of 171 samples sequenced in GBM. All three lie in the protein kinase 

domain and two are predicted to change the kinase function due to their occurrence in 

highly conserved residues in the kinase. These results suggest kinase inhibitors 

targeting the ERK proteins in select cases may be effective. CDKN2A is a well-

known tumor suppressor whose loss, primarily through homozygous copy number 

deletion, is an early driver of oncogenesis. Thus it is consistent that our method 

predicts LOF for this important tumor suppressor in both the GBM and LUSC for 

those cases in which the gene is present but mutated. Counter to expectation, our 

method assigns a positive score to NF1, which is a well-known tumor suppressor 

through its characterized inhibition of Ras. Detailed inspection of such examples may 

reveal important further refinements to the method particular in the neighborhood 

selection step.  

In addition to NFE2L2 discussed earlier, analysis of the LUSC cohort also 

reveals potentially therapeutically important targets in select cases. PIK3C2G for 

example, may act as a driver in a handful of patients and could in theory be targeted 
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by AKT pathway inhibitors or rapalogs. The low negative value of HUWE1, a less 

well-studied E3 ligase, suggests this enzyme might play a role analogous to that of 

CUL3 in degrading NFE2L2 in some cases. 

PARADIGM-SHIFT applied to the ovarian dataset also gave informative 

insights into this tumor type. Nearly all samples harbor TP53 mutations (n=179). The 

PS was mostly negative for TP53 consistent with the expected LOF of this tumor 

suppressor. In addition, our analysis may clarify potentially important directional 

information about pathway alterations. For example, the EPH receptor family is 

known to participate in bidirectional signaling [Aoto and Chen 2007]. The high 

absolute differences in the PS scores seen across this diverse family in the ovarian 

cohort may reflect functionally opposing roles of these bidirectional receptors in 

oncogenesis.  

3.2.4 Orthogonality with Sequence-based Methods 

Finally, because PARADIGM-SHIFT is the first method to make use of a 

surrounding estimate of pathway activity to predict the impact of a mutation, we 

sought to measure the degree to which it provides orthogonal information compared 

to other popular approaches. For this comparison, we used SIFT [Kumar, Henikoff et 

al. 2009], PolyPhen2 [Adzhubei, Schmidt et al. 2010], and MutationAssessor [Reva, 

Antipin et al. 2007], each of which implements a different, sequence-based method to 

predict the consequence of mutations. We also included CONDEL [Gonzalez-Perez 

and Lopez-Bigas 2011], which produces an integrated call by combining the above 

three methods. We calculated the Pearson correlation between each of the methods 
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and between each of the methods to PARADIGM-SHIFT. Not surprisingly, due to the 

heavy sequence-based nature of the previous methods, they all have higher 

correlations among themselves than they do to PARADIGM-SHIFT, Figure 11. Thus, 

our method may provide novel viewpoints on mutations that can be used in 

conjunction with sequence-based methods to gain a fuller understanding of the impact 

of mutated genes, their role in carcinogenesis, and how therapies might be developed 

for individual tumors. 

 
Figure 11 PARADIGM-SHIFT correlations to sequence-based approaches.  

Our approach uses different information which may provide a complementary 

view compared to protein-sequence based approaches. It enables probing into 

infrequent events and can be used to detect the impact of non-coding mutations. In 
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addition, it may be useful for detecting those cases that harbor passenger mutations 

where the mutation is either neutral or the cell has compensated somehow to keep the 

surrounding pathway intact. Finally, since our approach couples single gene mutation 

events with broader pathway activation signatures, it could be used to place genes 

with unknown/little known function and provocative mutations, into new pathways, 

as suggested by the case of HUWE1 above. 

3.3 NFE2L2 in TCGA LUSC 

To gauge the utility of the method in predicting gain-of-function mutations on 

a known proto-oncogene, we applied our method to mutations in NFE2L2 in lung 

squamous cell carcinoma (LUSC). NFE2L2 is a transcription factor that directs 

response to stress and oxidative damage in cells. Activating mutations in specific 

lysine residues stabilize the protein by preventing its degradation via binding to the 

KEAP1/CUL3 ubiquitin ligase complex. In the TCGA lung squamous dataset, 

NFE2L2 was found to be predicted as GOF by the enrichment of positive PS scores 

associated with NFE2L2 mutations compared to NFE2L2 wild-type samples. There 

are several features upstream and downstream of NFE2L2 that can explain the 

discrepancy in signal we are observing with PARADIGM-SHIFT. KEAP1 in NFE2L2 

mutant samples is upregulated whereas downstream targets such as NQO1, GCLC, 

GCLM, and others appear highly expressed indicating that the mutant NFE2L2 is 

insensitive to repression by KEAP1 and remains highly active, thus the GOF call.  
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Figure 12 PARADIGM-SHIFT result for NFE2L2 in LUSC.  

This result is illustrated in the CircleMap display in Figure 12A. The 

advantage of a CircleMap display is that multiple data types can be represented for a 

given gene. For example, NFE2L2 has five rings the inner ring indicates the samples 

with NFE2L2 mutation in black and samples without black as NFE2L2 wild-type. 

The corresponding data going outward represent the data for these two groups, 

expression, inferred activity from the R-run, inferred activity from the T-run, and PS 

score. The samples are sorted first by NFE2L2 mutation status then by PS score. The 

other rings have the same inner ring, but have the corresponding expression and 

PARADIGM IPL for the gene plotted. The trends to notice for a PARADIGM-SHIFT 

figure such as this is the enrichment of red, positive, PS scores tracking with NFE2L2 

mutation versus in the wild-type indicating a GOF. This PARADIGM-SHIFT result is 
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supported by high expression of NFE2L2’s downstream transcriptional targets 

tracking with NFE2L2 mutation and high activity of NFE2L2’s repressors and low 

activity of NFE2L2’s activators upstream. 

The PARADIGM-SHIFT t-statistic can be derived, by comparing the 

distribution of PS scores for mutant and wild-type NFE2L2 samples, Figure 12B. 

Random permutation analysis confirmed that the positive PS scores seen for mutated 

cases relative to the non-mutated cases were significant, Figure 12C. Thus, the 

method was able to predict a positive increase in activity of this gene relative to its 

regulatory inputs consistent with the known oncogenic influence of these mutations.  

3.4 RHOA in TCGA STAD 

As RHOA appears to be a highly recurrent novel mutation identified in the 

genome-stable (GS) molecular subgroup of TCGA stomach adenocarcinomas 

(STAD), to investigate the pathway evidence for loss-of-function, gain-of-function, or 

neutrality of specific mutations in this gene across the cohort we employed 

PARADIGM-SHIFT. Along with mutations in RHOA, we also analyzed fusion events 

in ARHGAP26 and ARHGAP6 as these events were found to be mutually exclusive 

to mutations in RHOA and also enriched in the GS cluster. The location of these 

mutations occur in a hotspot suggesting gain-of-function, however, the mutations 

were not analogous to oncogenic mutation in other RAS-family GTPases. Thus, 

pathway signatures identified by PARADIGM-SHIFT shared with the RHOA 

mutations could provide orthogonal evidence about the mechanism of action of these 

fusion events. 
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There were 50 samples within the GS group with available copy number and 

expression data to run PARADIGM-SHIFT analysis, with 6 RHOA mutations and 8 

CLDN18-ARHGAP fusions in this set. PARADIGM parameters were trained on the 

complete cohort of samples with available copy number and expression data with a 

total of 258 samples. The RhoA-ROCK signaling pathway was constructed from 

MetaCoreTM and RHOA mutation neighborhoods were selected in a supervised 

fashion by selecting features based on t-statistic. The accuracy of the model is then 

assessed by using the absolute PS score as a classifier to predict the presence of an 

alteration (RHOA mutation or ARHGAP fusion). The model was able to predict 

alteration status with an average AUC of 0.62 across 5-fold cross-validation 

suggesting that the PARADIGM-SHIFT model was able to distinguish samples altered 

in this pathway. 

 

Figure 13 PARADIGM-SHIFT result for RHOA in STAD.  

When the distribution of PS scores for samples with alterations in either 

RHOA or ARHGAP are compared to samples without either of these alterations, an 
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enrichment of positive PS scores was identified indicating gain-of-function (GOF) on 

average through the RhoA signaling pathway, Figure 13A. Mutations are shown as 

black and fusions are shown in grey in the inner ring. The significance of this 

aggregated GOF score was determined by running a background model in which the 

selected network topology is fixed, but the data is permuted, thus assigning random 

genes to the surrounding network neighborhood of the RHOA protein. Under this 

background model, the GOF aggregated score was found to have a p-value of 0.047, 

Figure 13B. Altogether, these findings suggests that the signaling consequences of 

RHOA mutations or ARHGAP fusions lead to GOF based on the discrepancy of up- 

vs. down- stream activity signals. 

PARADIGM-SHIFT was run on the complete cohort to determine the 

functional impact of alterations on the network and its network was viewed with a 

CircleMap display, Figure 13C [Wong et al, Nucleic Acids Research 2013]. As 

expected from prior knowledge, RHOA activation is mediated through the 

transcription factor STAT3. The pattern of expression for downstream targets IRF1 

and IL1B mirrors the profile of PS scores concordant with RhoA pathway activation 

in the samples with alterations. Interestingly, downstream targets IFNG and 

PLA2G4A appear to be active in the case of either RHOA mutation or ARHGAP 

fusion. This suggests that different alterations in the RhoA pathway may not be 

equivalent leading to slightly different phenotypes. Additionally, the presence of 

samples with high PS scores in the non-altered set also suggests that there may be 
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additional events within the GS subgroup not accounted for that lead to RhoA 

signaling activation. 

3.5 TCGA PanCancer 12 

High TP53 mutation rates characterize several tumor types including those 

represented by the three different PanCan-12 COCA subtypes C4-basal-breast, C9-

ovarian, and C2-squamous-like. PARADIGM-SHIFT was utilized to predict the 

functional impact of mutations for these tumors. With the high prevalence of 

truncating mutations, mutations leading to the addition of a stop codon or splice site 

mutation, it is believed that many of the mutations in TP53 can be expected to lead to 

LOF. In this analysis, PARADIGM-SHIFT was trained on the truncating samples 

versus wild-type with the intention of extending the inference out to the missense 

mutations in order to observe any differences in TP53 pathway impact across the 

different types of tumors with high TP53 mutation. 

Surprisingly, our pathway and gene program analysis revealed a strong 

prediction of LOF in C9-ovarian and C4-basal-breast, but not in C2-squamous-like. 

PARADIGM-SHIFT analysis predicts loss-of-function of TP53-truncating mutations 

(observed in 43% of C4-BRCA/basal, 38% of C9-OV, and 30% of C2- squamous-like 

cases) at a significantly higher degree in the C4-BRCA/basal and C9-OV subtypes 

compared to the C2- squamous-like subtype. Also, the copy-number data when 

aligned with TP53 missense and truncating mutations reveals more loss of 

heterozygosity (LOH) in the C9-OV and C4-BRCA/basal than in the C2-squamous-

like samples. These observations are displayed in Figure 14 with the average PS 
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scores for the truncating mutations for each cluster shown. These observations 

suggested a mechanism within C2-squamous-like tumors that lead the surrounding 

pathway to remain relatively functionally intact compared to C9-ovarian and C4-

basal-breast. 

 

Figure 14 PARADIGM-SHIFT result for TP53 in ovarian, basal breast, and squamous tumors in the 
PanCancer 12.  

Upon further investigation of the differences in the clusters identified by the 

PARADIGM-SHIFT analysis, the apparent higher TP53-pathway activity in C2-

squamous-like tumors may be related to the expression of isoforms of related family 

members TP63 and/or TP73, which may compensate for TP53 mutation in the C2-

squamous-like tumors. Notably, the transcriptional targets of TP53 shared with 

TP63/73 appear to be more highly expressed in the C2-squamous-like than in the C9-
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ovarian or C4-basal-breast clusters. A similar finding is supported by functional 

experimental data in HNSC lines and tumors [Lu et al., 2011]. In HNSC, the function 

of TP63/73 in growth of HNSC was modulated in the presence of inflammatory 

factor TNF-a and cREL. 

 

Figure 15 Isoform specific expression of TP63 and TP73 isoforms in ovarian, basal breast, and squamous 
tumors in the PanCancer 12.  

Indeed, TP63 expression levels, in particular expression of the oncogenic 

dNp63 isoform, are significantly higher in the C2-squamous-like subtype than in the 

C4-basal-breast tumors, Figure 15. TP63 network activity or increased expression in 

the C9-ovarian subtype was not observed. These studies show the potential for p63/73 
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compensatory function for mutated or suppressed p53 in HNSC and certain breast 

cancer tumors, which has potential implications for targeted and standard therapy 

across these malignancies. These data indicate that TP53/63/73 downstream activities 

are of potentially broader significance among the C2-squamous-like, C9-ovarian and 

C4-basal-breast subtypes, with similarly high TP53 mutation rates. 

3.6 NOTCH1 in TCGA LGG 

NOTCH1, a highly recurrent mutation identified in the IDHmut-codel 

subgroup, was investigated for pathway evidence for loss-of-function, gain-of-

function, or neutrality of specific mutations in this gene across the lower grade glioma 

(LGG) cohort. NOTCH1 has been known to harbor both activating (as in liquid 

malignancies) and inactivating types of mutations (as in squamous cell cancers), so 

PARADIGM-SHIFT was employed for this analysis. Thus, pathway signatures 

identified by PARADIGM-SHIFT shared with the NOTCH1 mutations could provide 

clues about the mechanism of action of these genomic events. The initial hypothesis 

for NOTCH1 in LGG was that it would likely be GOF, however LOF was predicted 

by PARADIGM-SHIFT.  

There were 246 samples within the IDH mutant and wild-type subtypes and 1 

sample that was not assigned a subtype (NOTCH1 fusion) with available genomic 

data to run PARADIGM-SHIFT analysis, with 29 NOTCH1 mutations, one 

homozygous deletion, one genomic rearrangement, and two fusions in this set. 

PARADIGM parameters were trained on the complete cohort of samples with 

available copy number and expression data with a total of 272 samples. The 
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NOTCH1 mutation neighborhoods were selected in a supervised fashion by selecting 

features based on t-statistic. When the distribution of PS scores for samples with 

alterations in NOTCH1 are compared to samples without either of these alterations, 

an enrichment of negative P-Shift scores was identified indicating LOF on average 

through the NOTCH1 signaling pathway. The significance of this aggregated LOF 

score was determined by running a background model in which the selected network 

topology is fixed, but the data is permuted, thus assigning random genes to the 

surrounding network neighborhood of the NOTCH1 protein. Under this background 

model, the LOF aggregated score was found to have a p-value of 0.02. Altogether, 

these findings suggest that the signaling consequences of NOTCH1 genomic events 

in LGG lead to LOF based on the discrepancy of up- vs. down- stream activity 

signals. PARADIGM-SHIFT was run on the complete cohort to determine the 

functional impact of alterations on the network and its network was viewed with a 

CircleMap display, Figure 16. The pattern of expression for many of the downstream 

targets of NOTCH1 mirrors the profile of PS score concordant with NOTCH1 

pathway deactivation in the samples with alterations. Low PS scores are also 

observed in many of the other samples within the IDHmut-codel subtype, which 

suggests there may be additional mechanisms of NOTCH signaling pathway 

deactivation not considered in this analysis. 



	   60	  

 

Figure 16 PARADIGM-SHIFT result for NOTCH1 in LGG.  

Follow-up analysis of the mutational profile of alterations in NOTCH1 in 

LGG showed a spread of alterations in the EGF-like domain repeats as well as the 

intracellular domain, Figure 17A. This finding is most similar to the pattern of 

mutations in NOTCH1 observed in head and neck squamous carcinoma (HNSC), 

Figure 17B, as opposed to the pattern observed in acute lymphoblastic leukemia 

(ALL), Figure 17C. This supports NOTCH1 as LOF in LGG as LOF mutations are 

also observed in HNSC, while GOF mutations are typically observed in ALL. 
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Figure 17 Mutational pattern of NOTCH1 in LGG, HNSC, and ALL.  

3.7 Summary 

Unlike traditional methods of assessing mutations, PARADIGM-SHIFT allows 

us to probe the genomic consequences of various genomic alterations by observing an 

effect on the surrounding network. This offers an orthogonal view to functional 

impact prediction as well as a glimpse into the mechanism by which the pathways are 

altered. PARADIGM-SHIFT has proven to be a useful tool applicable across many 

different tumor types assessing the impact of alterations on a specific set of 
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alterations with network information. By assessing its pathway effect, the functional 

impact of mutation (GOF or LOF) was confirmed for many alterations; however, 

several unexpected findings were discovered as well. The lack of a predicted LOF of 

TP53 in squamous-like tumors across the PanCancer 12 revealed a mechanism of 

TP63 compensation. The presence of canonical mutations, therefore, does not 

necessarily mean a similar pathway affect across different types of tumors. NOTCH1 

that has been documented to harbor activating and inactivating mutations was 

discovered to be LOF in LGG similar to the types of alterations observed in HNSC. 

These findings were made possible by probing the surrounding neighborhood around 

the affected gene and has the potential to elucidate impact in cases where the 

mechanism of action of mutation is not well understood. 

PARADIGM-SHIFT has been shown to be a useful method, however, there 

are several limitations of and caveats to the analysis as well. While extreme (absolute) 

PS scores show a good overall correlation with MutSig, several of the genes seem to 

have predictions on average in the opposite direction than expected (e.g. NF1 in 

GBM). Complex regulatory logic surrounding the gene may show a discrepancy but 

the direction of the discrepancy may not always be clear. It will take further 

investigation into these cases to determine if a reliable direction can be inferred from 

the sign of the PS score. It may be the case that certain parts of the pathways are 

driven by additional alterations not accounted for in the models. 

Additionally, the method can only be applied to genes with sufficient 

representation in the curated set of pathway interactions. While current pathway 
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databases have a biased coverage of cancer-related genes, many of the genes with 

low-frequency mutations are still among those with little pathway information. It is 

critical to expand pathways beyond the curated set to encompass such orphan genes 

into the analysis of mutation consequences. We expect that methods that can 

computationally predict reliable casual gene-gene interactions from functional 

genomics datasets, such as from ChIP-Seq data with information about novel 

transcription-factor to target relationships, will significantly improve the breadth of 

genes to which pathway-based mutation impact approaches can be applied. 

	   	  



	   64	  

4 PARADIGM-SHIFT ‘Driver Modules’ 

One unique advantage of PARADIGM-SHIFT analysis of mutational impact is 

that, unlike most traditional methods, pathway impact can also be predicted for 

samples without mutations. Through several analyses in many of the TCGA working 

groups, we have noticed that in many cases a predicted functional impact can occur in 

a large proportion of samples that are wild-type for the focus gene (FG).  In addition, 

in several cases known alterations affecting the same pathway have been shown to 

highly correlate with prediction of this functional impact. In this chapter, I will 

present work from a variety of TCGA projects illustrating the ability to predict the net 

functional impact of multiple events on a single pathway. While this approach is 

effective for confirming the net effect of known alterations on a pathway, I devise a 

method to infer these events based on a significant correlation to the PS scores in the 

wild-type samples. 

4.1 HPV infection and TP53 in TCGA HNSC 

HPV infection is a feature common to many head and neck squamous cell 

carcinomas. In addition, HPV infection and TP53 mutation, which are each known to 

lead to deactivation of the p53 signaling pathway by different mechanisms and in 

many cancers, appear to be highly mutually exclusive. To investigate the pathway 

evidence for the effect of HPV infection and TP53 mutation across the cohort, we 

applied PARADIGM-SHIFT. PARADIGM-SHIFT assigns a pathway impact score 

based on the discrepancy in upstream and downstream signal stemming from events 

such as mutation, but is not limited to predicting impact on samples with a mutation. 
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Thus, pathway signatures identified by PARADIGM-SHIFT shared with the TP53 

mutations could provide clues about the mechanism of action of HPV infection. 

 

Figure 18 PARADIGM-SHIFT result for TP53 and HPV+ in HNSC.  

There were 279 samples within the HNSC cohort having available copy 

number and expression data to run PARADIGM-SHIFT analysis, with 206 TP53 

mutations and 36 HPV infected cases in this set. PARADIGM parameters were trained 

on the complete cohort of samples with available copy number and expression data 

with a total of 282 samples. When the distribution of PS scores for samples with a 

mutation in TP53 or HPV infection are compared to samples without either of these 
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events, Figure 18, an enrichment of negative PS scores was identified indicating loss-

of-function (LOF) on average through the tp53 signaling pathway. The significance 

of this aggregated LOF score was determined by running a background model in 

which the selected network topology is fixed, but the data is permuted, thus assigning 

random genes to the surrounding network neighborhood of the TP53 protein. Under 

this background model, the LOF aggregated score was found to have a p-value of < 

0.0001. Altogether, these findings suggest that the signaling consequences of TP53 

mutations or HPV infection lead to LOF based on the discrepancy of up- vs. down- 

stream activity signals. PARADIGM-SHIFT was run on the complete cohort to 

determine the functional impact of these events on the network and its network was 

viewed with a CircleMap display, Figure 18.  

As expected, both missense and truncating mutation in TP53 appear to 

deactivate the p53 signaling pathway, the expression of the downstream targets of 

TP53 are lower in most of the mutated cases in comparison to wild-type. 

Interestingly, in the case of HPV positive cases the downstream targets of TP53 

appear more strongly down-regulated. Additionally, regulators of TP53 activity, such 

as TAF1 and SMAD3, appear to be trying to activate TP53 and TP53 itself has high 

expression in HPV positive cases. This finding is consistent with HPV infection 

interfering with wild-type TP53 protein to prevent activation of its downstream 

targets, and succeeding in producing this net pathway LOF perhaps even more 

effectively than seen in cases without HPV infection but with TP53 mutation. 
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4.2 RTK Fusions in TCGA PanCancer 28 

Mutations in receptor tyrosine kinase (RTK) genes, such as EGFR, FGFR, or 

c-Met, occur frequently in cancer. Alterations in RTK family genes were examined in 

28 publically available TCGA tumor types, to be referred to as the PanCancer 28 set. 

Within the PanCancer 28 a majority of the tumor samples had an alteration in an RTK 

gene or in a gene involved in the RTK pathway. However, of the 28 tumor types in 

the PanCancer 28, 22 had sufficient genomic data to perform PARADIGM analysis, 

and of those 18 different tumor types harbored at least one alteration related to the 

RTK pathway. These tumor types are BLCA, BRCA, CESC, COAD, GBM, HNSC, 

KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, SARC, SKCM, THCA, and 

UCEC consisting of a total of 4700 tumor samples. Samples were classified into six 

groups based on their RTK alteration status: RTK fusion, RTK amplification, RTK 

mutation, mutation in a downstream signaling component of the RTK pathway, 

multiple RTK aberrations, and wild-type. PARADIGM-SHIFT was used to investigate 

the net pathway evidence for loss-of-function, gain-of-function, or neutrality of these 

alterations across these tumors. The RTK pathway is combined from regulators and 

targets of EGFR and FGFR, two of the main RTK genes altered in cancers. 

When the distribution of PS scores for samples with an alteration in RTK 

pathway genes are compared to samples without these alterations, an enrichment of 

negative PS scores was identified indicating gain-of-function (GOF) on average 

through the RTK signaling pathway. PARADIGM-SHIFT was run on the complete 

cohort to determine the functional impact of these events on the network and its 
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network was viewed with a CircleMap display, Figure 19. The type of RTK alteration 

is broken out in the center ring, while the average PS score for each group is 

represented on the outer ring with the average value annotated. Of the RTK 

alterations, RTK amplification as well as multiple aberrations and aberrations in a 

downstream signaling component appear the most shifted towards GOF, though RTK 

mutation and fusion also have average scores above those of the wild-type samples. 

 

Figure 19 PARADIGM-SHIFT result for RTK events in the PanCancer 28.  

The impact of gene fusions on RTK fusions are of particular interest to us 

since certain gene fusions in RTK genes have shown a strong activation in certain 

cohorts, such as GBM or LGG, but known fusions that disrupt the tyrosine kinase 

domain may be ambiguous as to whether they are functional or not. In Figure 20, 
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RTK fusions are separated further into alterations in specific RTK families and 

whether or not the gene fusion preserved the entire kinase domain or interrupted it. 

Consistent with expectation, gene fusions that do not interrupt the kinase domain 

show a stronger signal for GOF based on average PS score compared to kinase 

domain disrupting counterparts. Also notably, the average PS score for ERBB family 

RTKs, such as EGFR, show very strong activation at a similar level to RTK 

amplifications in the previous figure. Overall these results support the conclusion that 

alterations in RTK pathway genes lead to activation of the RTK signaling pathways, 

however, certain alterations show a stronger signal of alteration such as ERBB 

kinase-preserving fusions and RTK amplifications. 

 

Figure 20 PARADIGM-SHIFT result for RTK fusion events in the PanCancer 28.  
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4.3 BRAF, RAS, and NF1 in TCGA Melanoma 

As mutations in BRAF, RAS, and NF1 are highly recurrent and show mutual 

exclusivity in melanoma tumors, PARADIGM-SHIFT was employed to investigate 

the pathway evidence for loss-of-function, gain-of-function, or neutrality of these 

mutations across the cohort. Samples available for analysis that had both copy 

number and expression data included 118 with BRAF hotspot mutations, 81 with 

RAS hotspot mutations, 23 with any NF1 mutation, and 38 without any of these 

mutations (triple wild-type). PARADIGM-SHIFT was used to identify pathway 

signatures shared across these mutations that all impinge on the BRAF-MAPK 

signaling pathway, which could provide clues about the mechanism of action of these 

genomic events. 

PARADIGM parameters were trained on 335 samples that had available copy 

number and expression data. Pathway neighborhoods for BRAF were constructed 

before running the algorithm to find those most informative for predicting gain- or 

loss-of-function based on the activities of the surround regulators and targets. Genes 

in the BRAF neighborhood were selected in a supervised fashion based on a t-statistic 

score that included genes that showed differential expression for BRAF mutant versus 

triple wild-type greater than one standard deviation above the mean. The same 

neighborhoods were used for the RAS mutant and NF1 mutant versus triple wild-type 

calculations. PARADIGM-SHIFT (PS) scores for BRAF, which reflect the 

discrepancy in upstream versus downstream pathway signals, were calculated as the 

difference in inferred activity between the two runs of PARADIGM. 



	   71	  

When the distribution of PS scores for samples with alterations in BRAF, 

RAS, or NF1 are compared to samples without these alterations, an enrichment of 

positive PS scores was identified indicating gain-of-function (GOF) on average 

through the BRAF-MAPK signaling pathway for these alterations. The significance 

of this aggregated GOF score was determined by obtaining a background model in 

which the selected network topology is fixed, but the data is permuted, thus assigning 

random genes to the surrounding network neighborhood of the BRAF protein. Under 

this background model, the GOF aggregated score was found to have a p-value of < 

0.0001 for BRAF hotspot mutation versus triple wild-type, 0.0004 for RAS hotspot 

mutation versus triple wild-type, and 0.005 for NF1 any mutation versus triple wild-

type, Figure 21A. As expected, these findings suggest that the signaling consequences 

of genomic events in these mutations in SKCM lead to GOF based on the discrepancy 

of up- vs. down- stream activity signals. 
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Figure 21 PARADIGM-SHIFT result for BRAF, RAS, and NF1 in SKCM.  

PARADIGM-SHIFT was run on the complete cohort to determine the 

functional impact of alterations on the BRAF network and was visualized with a 

CircleMap display, Figure 21B. The pattern of expression for many of the 

downstream transcriptional targets of BRAF-MAPK signaling correlates with the 

profile of PS scores concordant with BRAF pathway activation in the samples with 

alterations. High PS scores are also observed in many of the other samples belonging 

to the triple wild-type group, which suggests there may be additional mechanisms of 

BRAF signaling pathway activation not considered in this analysis.  
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4.4 NFE2L2 and KEAP1 in PanCancer 12 

 

Figure 22 PARADIGM-SHIFT result for NFE2LE in PanCancer 12 showing samples with high PS score in 
many NFE2L2 wild-type cases.  

While NFE2L2 mutation predicts GOF with high PS scores, there also appears 

to be many samples that do not harbor a mutation in NFE2L2 that have high PS 

scores as well, Figure 22. These samples potentially have additional alterations that 

could lead to activation of the same pathway through an alternate mechanism. 

Subsequent analyses identified KEAP1 mutations are enriched in the set of samples 

with higher PS scores, Figure 23. This analysis is performed by taking the ranked list 

of samples and looking for enrichment of other genomic events correlating with high 

predicted impact. These enrichments are calculated similar to running GSEA, but 

performed on a ranked list of samples instead of genes. The sets contain the list of 

samples altered for a particular gene. GSEA identifies which of these “event sets” is 
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most enriched for predicted GOF or LOF. This approach outlined here allows us to 

identify events associated with a predicted functional impact without prior knowledge 

of these events. This finding of KEAP1 mutations being enriched in the NFE2L2 

wild-type samples with high PS scores supports that KEAP1 mutation is an 

alternative mechanism of activating the Nrf2 signaling pathway, which is consistent 

with prior knowledge of Nrf2 signaling pathway activation. It is known that in wild-

type cases NFE2L2 and KEAP1 normally interact to signal for NFE2L2 to be 

degraded, however, this finding suggests mutation of either NFE2L2 or KEAP1 

disrupts this interaction therefore leading to higher activity of NFE2L2. In addition to 

identifying KEAP1 associations, several other genes are implicated as well which are 

involving in the Nrf2 signaling pathway or have evidence of interacting with NFE2L2 

indirectly, such as COL11A1, NAV3, NF1, APC, and CUL3. 

 

Figure 23 KEAP1 mutations is most significantly associated with NFE2L2 predicted GOF in wild-type 
samples.  
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In this example, PARADIGM-SHIFT analysis was able to correctly identify 

NFE2L2 mutation as well as linking KEAP1 mutation as driving factors leading to 

Nrf signaling pathway activation. PARADIGM-SHIFT uses the difference in inferred 

upstream and downstream activity, which allows us to make inferences about 

pathway activation or de-activation regardless of whether SNV data is present. Since 

PARADIGM-SHIFT can be run on samples without alterations in the focus gene, we 

can look for hits to the pathway that lead to the same phenotype from copy number 

alterations, changes in gene expression, gene mutations and fusions, or other events. 

In addition, PARADIGM-SHIFT allows us to identify the genes that appear most 

affected by genomic aberrations to these pathways that may be helpful for identifying 

effective interventions for treating these cancers. In the next section, I outline the 

procedure in further detail and show an example in which the iterative discovery of 

associated events improves discovery of additional associated events. 

4.5 The PARADIGM-SHIFT Molecular Machines Method 

Predicting the functional impact of mutations from pathways is a challenging 

problem, first we need accurate models of the interaction network in order to utilize 

pathways effectively, and second, the information we have about which samples are 

likely altered is incomplete. There are false positive calls of mutations, mutations 

with no functional consequence, and mutations in genes that have a similar 

consequence in the same pathway. If this last group, mutations in genes that have a 

similar consequence in the same pathway, can be identified for many of the known 

driver pathways this has the greatest potential for extending our understanding of 
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mutational drivers. While many tumors typically have mutations in several well 

characterized driver genes, there are many tumors that do not have mutations in any 

of these but have rarer driver events. Finding these “molecular machines” will be key 

for developing new treatments and could potentially identify patients subgroups that 

will respond to known therapies that target these pathways. 

 

Figure 24 Procedure for discovering significantly associated events by PARADIGM-SHIFT score.  

 These events can be identified by looking for enrichment of the samples 

correlating to a predicted functional impact. I employ GSEA for this analysis, 

however, where GSEA looks for enrichment of gene sets in a ranked list of samples, I 

am looking for enrichment of sample sets in either tail of a ranked list of samples. PS 

score determines the sample rank and sample sets are created for whether those 
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samples contain a particular event. GSEA can then be applied to discover which 

events are significantly associated, Figure 24. Significance is estimated by generating 

null permutations of each sample set and estimating the probability of obtaining an 

enrichment as or more significant than the true enrichment. In order to control for 

multiple hypotheses, the number of events tested can be limited by evidence of 

mutual exclusivity, pathway proximity, or predicted drivers by recurrence methods, 

such as MutSig or MuSic. This is a necessary step since there would not be sufficient 

statistical power to test all hypotheses. Significant events are determined by fixing an 

FDR rate, α = 0.1, by the Benjamini-Hochberg procedure [Benjamini et al. 1995]. 

 In the next section, I will show the example of BRAF GOF in SKCM again, 

but demonstrate that this approach for identifying “molecular machines” can be used 

to identify NRAS and NF1 without biasing the analysis with prior knowledge. I will 

also demonstrate that by pulling in the events identified into the positive set, by 

building up this “molecular machine” iteratively, it increases our power to detect 

additional events. This could be due to two major reasons. First, pulling in additional 

true positives, samples with a functional impacted pathway, from the negative set to 

the positive set allows for more accurate training of the PARADIGM-SHIFT network. 

Second, trying to identify multiple associated events reduces our power to detect 

since they confound each other in the enrichment; this is especially true for lower 

frequency events. 
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4.5.1 Application to BRAF in SKCM 

In the previous analysis of BRAF in melanoma (SKCM), RAS and NF1 

mutants were removed from the wild-type set since we had a prior expectation that 

these mutants were involved in BRAF signaling, however, in a true scenario in which 

we want to identify novel associated events, we will not have this prior knowledge. I 

then apply the PARADIGM-SHIFT “molecular machines” methodology to BRAF in 

SKCM, in order to test our ability to detect RAS and NF1 as associated events. 

 

Figure 25 PARADIGM-SHIFT identifies BRAF/NRAS/NF1 molecular machine.  

 Since GISTIC copy number calls are available for SKCM, mutation is 

classified as the presence of a non-silent SNV or an absolute CNV greater than or 

equal to two. PARADIGM-SHIFT was run for BRAF mutation versus wild-type, 

identifying a significant GOF for BRAF signaling and identifying NRAS as 

significantly associated. Combining NRAS mutations into the positive set and 
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retraining then allows us to identify NF1, Figure 25. As seen in the second 

PARADIGM-SHIFT run including BRAF and NRAS, the distribution of PS scores 

changes significantly. Additionally, the new model accounts for more of the BRAF 

mutant samples being predicted as GOF, while many wild-type samples also have 

high PS scores. This suggests that the majority of samples in SKCM have activated 

BRAF signaling, however, the degree of activation may differ across different 

mechanisms of activation. 

4.5.2 MYB and MALAT1 in the Larsson 505 

Along with identifying infrequent drivers, PARADIGM-SHIFT can be 

extended to events that cannot be assessed by traditional approaches, such as the 

impact of HPV in HNSC as previously discussed. This also includes the possibility of 

discovering the functional impact of non-coding mutations. Not much is known about 

the function of non-coding mutations and the pathways they are involved in, however, 

if they can be associated with a functional impact on a known driver pathway, we 

may gain a greater understanding of these mutations. In a recent effort the 

International Cancer Genome Consortium (ICGC) aims to characterize a large 

number of tumors for mutations in long non-coding RNA (lncRNA) mutations in 

addition to coding mutations. In a pilot study of 505 samples mutations in MALAT1, 

a long non-coding RNA, is found to be associated with MYB pathway GOF, Figure 

26. This connection is consistent with literature demonstrating MALAT1 up-

regulation leads to down-regulation of MYB [Wang et al. 2014]. This PARADIGM-

SHIFT analysis suggests the mutations in MALAT1 are LOF due to the loss of 
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regulation with MYB. Additionally, MALAT1 was found to be significantly mutated 

across multiple tumors in the original PanCancer 12 effort. 

 

 

Figure 26 PARADIGM-SHIFT identifies MALAT1 association with MYB GOF.  

4.6 Summary 

In this chapter, I have demonstrated that PARADIGM-SHIFT is capable of 

detecting net functional impacts of mutation across multiple individual events. These 

form what I term a “molecular machine,” a group of different events that lead to a 

similar pathway impact. These events are not limited to mutations in genes, but can 

include clinical information such as HPV infection causing TP53 LOF. By employing 

a sample-wise enrichment analysis with GSEA, I can discover events significantly 

associated with predicted functional impacts in samples wild-type for a given focus 

gene. Detection of these events can be confounded by the possibility of multiple 

events in the “molecular machine” along with wild-type samples not truly being wild-

type for other mutations, leading to incomplete knowledge input for the training of 
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these PARADIGM-SHIFT models. As a result, I show that an iterative approach may 

be helpful in the discovery of additional events, such as NRAS, and NF1 mutations 

that are associated with BRAF mutations in SKCM. Lastly, with the characterization 

of non-coding mutations in ICGC, a huge opportunity to relate non-coding mutations 

to pathways with PARADIGM-SHIFT is now available across a large set of tumors 

across many tumor types. 
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5 Galaxy Integration 

Computational science is a rapidly evolving field with many exciting 

developments, however, with the growing number of computational methods and 

publically available datasets reproducibility is a major issue. Data types do not always 

have a standardized format and even issues such as how missing data is declared can 

cause problems for running various computational methods. In a recent article about 

reproducible computational research, several rules were outlined for how 

reproducibility can be achieved [Sandve et al. 2013]. 

To address these concerns I have made my code publically available and have 

developed them to work within the Galaxy framework, with the goal of making my 

computational tools more accessible as well as reproducible. In this chapter, I will 

overview the tools I have contributed to Galaxy and discuss the unique challenges 

that we continue to face using high dimensional data and the rapidly evolving 

environment of computational research [Boekel et al. 2015]. 

5.1 Addressing the Need for Accessible and Reproducible Computational 
Tools 

Between 2000 and 2010 there were 742 English research papers retracted 

from the PubMed database [Steen 2010]. Most of these retractions were due to 

scientific mistakes, but there has been a surprisingly high incidence rate of fraud as 

well. Reproducibility and accessibility of methods and data is key to ensure the 

validity of scientific discovery in this era of big data. In order for this to happen 

several rules need to be followed to ensure analytical reproducibility. Failure of 

replicability can occur when analytical steps between data and results are not properly 
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recorded, such as specification of model parameters being used or data manipulation 

steps. Research code changes quickly and if version information is lost then older 

results become irreproducible. Accessibility of methods is also a challenge since 

setting up tools written by others is no easy task; inputs and settings that are clear to 

the developer can be unclear to the average user. In an effort to address these 

challenges, I have incorporated my tools into the Galaxy framework, a web-based 

platform for transparent computational biomedical research.   

5.2 UCSC Pathway Analysis Toolshed 

In addition to a whole suite of standard tools that come alongside a Galaxy 

instance, support for incorporating custom tools exists as well. Many of the tools used 

by the Stuart lab have been incorporated into Galaxy, from data manipulation to 

computational tools with report outputs. In this section, I discuss the advantages of 

incorporating these directly into Galaxy and describe my contributions to this UCSC 

Pathway Analysis Toolshed. 

For a developer, it is fairly simple to take a tool that runs on the command line 

to one that is runnable through a Galaxy interface. With a few extra considerations 

about which files are output from the tools and tool dependencies, Galaxy tool 

development is relatively straightforward [Blankenberg et al. 2014]. Briefly, the 

developer describes the inputs and parameters visible to the users and indicates how 

those arguments are passed to the tools on the command-line running behind a 

Galaxy server through an XML formatted description, Figure 27. This allows users 

other than the developer to run tools with much more ease than on the command-line. 
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The inputs and parameters are made much clearer and the developer can restrict file 

types acceptable for inputs to reduce improper use. Additionally, with the Galaxy 

interface the history of analyses as well as version control of methods is available, so 

that any result made in Galaxy is more readily reproducible than “naked” code. 

 

Figure 27 PATHMARK tool in Galaxy with a record of the analysis on the History bar.  

 I have incorporated all the tools discussed in this Thesis to run behind a 

Galaxy server, including visualization tools such as scripts for the generation of 

CircleMaps and Cytoscape networks. 

5.2.1 PARADIGM 

PARADIGM analysis lays the foundation for many of the analyses performed 

in our lab. It is a versatile tool that integrates knowledge from a variety of different 

data sources and pathways in order to make sense of which pathway features appear 

activated. The PARADIGM binary can take in data matrices as input, however, due to 

memory issues and speed it is not practical to run PARADIGM on a single process. In 
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order to handle extremely large PARADIGM analyses a set of scripts are used as a 

wrapper for running PARADIGM in a parallel compute setting. I contributed to this 

code base by linking the code in with Galaxy, reducing the number of command-line 

calls and also making the scripts more efficient, so that we had the capacity to run on 

larger datasets. Example data are available examining inferred activities on a small 

pathway across a few cancer tumors. 

5.2.2 PATHMARK 

PATHMARK was developed to perform differential analysis on PARADIGM. 

In order to leverage the SuperPathway used by PARADIGM, PATHMARK identified 

clusters of highly differential PARADIGM features on the network. One of the major 

advantages of the method was its ability to produce results that are visually 

interpretable. PATHMARK analysis can be run directly in Galaxy producing files that 

can be visualized over the web with CytoscapeJS, discussed later, or through 

Cytoscape. Additional features not originally described in the original breast cancer 

cell lines paper were also developed for more general use, such as bootstrapping to 

determine the robustness of certain pathway regions or heat diffusion to propagate 

signal and promote the selection of a wider region. Example data are available for 

examining basal breast pathway markers. 

5.2.3 PARADIGM-SHIFT 

PARADIGM-SHIFT performs functional impact assessment of genomic 

alterations by integrating PARADIGM inference to identify discrepancies in pathway 

signal. By probing the effect on the surrounding pathway, PARADIGM-SHIFT 
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provides a unique perspective to predict functional impact. Integration with 

PARADIGM and the visualization tools within Galaxy simplify running PARADIGM-

SHIFT within the Galaxy environment. Example data are available for predicting 

NFE2L2 GOF across lung tumors. 

5.2.4 CircleMaps and CytoscapeJS 

As many of my tools are pathway-based, I have worked on various 

visualizations that aid in the display of these results. CircleMaps are particularly 

useful for network displays because by creating circular heatmaps, different samples 

and data types can be displayed for multiple genes on a network [Wong et al. 2013]. 

CytoscapeJS can then be used to display the network for PATHMARK or 

PARADIGM-SHIFT on web report allowing the results to interface directly through 

Galaxy. An example of a PARADIGM-SHIFT result displayed with CytoscapeJS with 

CircleMaps is shown below, Figure 28. 
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Figure 28 CytoscapeJS view with CircleMaps displayed.  

5.2.5 Making the Connections with Galaxy Workflows 

Another advantage of using Galaxy is to describe workflows. Workflows 

define a standard set of interconnected analyses that can all be run together rather 

than step by step. An example of such connections between tools can be described 

simply using the Workflow Canvas is shown in Figure 29. Workflows help ensure 

that the same procedure is used each time when an analysis requires repetitive use of 

that procedure across different cohorts. 
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Figure 29 Example workflow from running PARADIGM to identifying PATHMARK pathway markers.  

5.3 Future Challenges 

While Galaxy provides an invaluable framework for running computational 

methods in a reproducible and accessible manner, there are shortcomings that will 

need to be addressed in order for fluid sharing of tools. I will discuss a few of those 

challenges here and provide discussion for how they can be improved upon in the 

future. 

5.3.1 Shipping Modules with Docker 

Once computation tools have been successfully installed on a Galaxy server, it 

is relatively easy for collaborators to use these tools. However, managing the different 

dependencies for each module can quickly lead to broken tools clogging up analysis 

pipelines. Without a simple way to manage dependencies, installing tools into Galaxy 

can sometimes be more difficult than getting them to run on the command-line. 

Docker serves as a potential solution by offering a lightweight virtual container that 
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can be built to describe the dependencies necessary by any tools deployed in Galaxy 

[Merkel 2014]. This would reduce the overhead on the users by incorporating a 

Dockerfile containing the dependencies compiled by the developer to ship alongside 

any developed computational tools. 

5.3.2 Enforcing File Formats 

Yet another roadblock is the lack of standardized file formats between 

computational tools. Many tools have come to expect different assumptions about the 

formatting of the data. Issues as simple as expecting “NA” for missing values versus 

“Nan” can lead to clogs in pipelines. Strict enforcement of data types is needed to 

identify that at each step of the pipeline the expected results are observed and no 

“leaks” are allowed to propagate through the pipeline resulting in inaccurate findings. 

The danger of propagating errors through analyses grows with the increasing 

complexity of our workflows, so the necessary caution and overhead will be well 

worth the effort in the long run. Tools should use standardized formats when possible, 

but use adaptors between formats should a specialized format be necessary. This 

would also ensure maximal compatibility between tools. 

5.4 Summary 

Generating reproducible scientific results is a critical issue that needs to be 

addressed given the increasing number of publications now being retracted because of 

either scientific error or fraud. The former can be addressed in part by better 

bookkeeping to ensure that analytical results become reproducible after a paper is 

published. This is difficult to achieve without a common framework and guidelines 
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that must be followed. Galaxy has been growing in popularity for integrating 

biological computational tools with a suite of basic tools and visualizations. 

The toolshed concept also allows tools to be portable and removes the 

necessity to understand UNIX in order to run computational tools. This allows for 

tools to be more accessible to a wider user base. History and version control ensure 

that analyses run within Galaxy are reproducible. Our group has been using Galaxy to 

interface with collaborators and allow them to run our tools. In addition to developing 

novel tools for pathway-based analysis of genomic data in cancer, I have made my 

methods available to run through Galaxy.  
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