Skip to main content
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Electronic Theses and Dissertations bannerUC Santa Cruz

Exploring Adaptive Job Schedulers for Geographically Distributed Data Centers

Creative Commons 'BY-SA' version 4.0 license

To help meet the ever increasing demand for cloud computing services worldwide, while providing resilience and adequate resource utilization, cloud service providers have opted to distribute their data centers around the world. This trend has been motivating research from the data center management research and practitioner community on new job schedulers that take into account data center geographical distribution. However, designing, testing and benchmarking new schedulers for geo-distributed data centers is complicated by the lack of a common, easily extensible experimental platform. To fill this gap, we propose GDSim, an open-source, extensible job scheduling simulation environment for geodistributed data centers that aims at facilitating the benchmarking of existing and new geo-distributed schedulers. Using GDSim, job schedulers specifically designed for geo-distributed data centers can be tested, validated, and evaluated under a variety of data center workloads and conditions. We use GDSim to reproduce experiments and results for recently proposed geo-distributed job schedulers, as well as testing those schedulers under new conditions which can reveal trends that have not been previously uncovered. We demonstrate how GDSim can be used to design and evaluate different adaptive job schedulers, which, based on current workload and data center conditions, use heuristics to select the most appropriate scheduler.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View