Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Rbfox1 expression in amacrine cells is restricted to GABAergic and VGlut3 glycinergic cells.

Published Web Location
No data is associated with this publication.

Rbfox1 is a multifunctional RNA-binding protein that regulates alternative splicing, transcription, mRNA stability, and translation. Rbfox1 is an important regulator of gene networks involved in neurogenesis and neuronal function. Disruption of Rbfox function has been associated with several neurodevelopmental and neuropsychiatric disorders. We have shown earlier that Rbfox1 is expressed in retinal ganglion and amacrine cells (ACs) and that its down-regulation in adult mouse retinas leads to deficiency of depth perception. In the present study, we used several markers of ACs, including gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), neuropeptide Y (NPY), glycine transporter (GlyT1), and vesicular glutamate transporter 3 (VGlut3) to identify types of ACs that express Rbfox1. Expression of Rbfox1 was observed predominantly in GABAergic ACs located in the inner nuclear layer (INL) and ganglion cell layer (GCL). All GABAergic/cholinergic starburst ACs and virtually all NPY-positive GABAergic ACs were also Rbfox1-positive. Among glycinergic ACs, a sparse population of Rbfox1/VGlut3-positive cells was identified, indicating that Rbfox1 is expressed in a very small population of glycinergic ACs. These data contribute to our understanding about molecular differences between various types of amacrine cells and the cell-specific gene networks regulated by Rbfox1.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item