Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

The Brain Chart of Aging: Machine‐learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans

Published Web Location

https://doi.org/10.1002/alz.12178
Abstract

Introduction

Relationships between brain atrophy patterns of typical aging and Alzheimer's disease (AD), white matter disease, cognition, and AD neuropathology were investigated via machine learning in a large harmonized magnetic resonance imaging database (11 studies; 10,216 subjects).

Methods

Three brain signatures were calculated: Brain-age, AD-like neurodegeneration, and white matter hyperintensities (WMHs). Brain Charts measured and displayed the relationships of these signatures to cognition and molecular biomarkers of AD.

Results

WMHs were associated with advanced brain aging, AD-like atrophy, poorer cognition, and AD neuropathology in mild cognitive impairment (MCI)/AD and cognitively normal (CN) subjects. High WMH volume was associated with brain aging and cognitive decline occurring in an ≈10-year period in CN subjects. WMHs were associated with doubling the likelihood of amyloid beta (Aβ) positivity after age 65. Brain aging, AD-like atrophy, and WMHs were better predictors of cognition than chronological age in MCI/AD.

Discussion

A Brain Chart quantifying brain-aging trajectories was established, enabling the systematic evaluation of individuals' brain-aging patterns relative to this large consortium.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View