- Main
Ultrasensitive Isothermal Detection of SARS-CoV‑2 Based on Self-Priming Hairpin-Utilized Amplification of the G‑Rich Sequence
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of fatalities all over the world. Unquestionably, the effective and timely testing for infected individuals is the most imperative for the prevention of the ongoing pandemic. Herein, a new method was established for detecting SARS-CoV-2 based on the self-priming hairpin-utilized isothermal amplification of the G-rich sequence (SHIAG). In this strategy, the target RNA binding to the hairpin probe (HP) was uniquely devised to lead to the self-priming-mediated extension followed by the continuously repeated nicking and extension reactions, consequently generating abundant G-rich sequences from the intended reaction capable of producing fluorescence signals upon specifically interacting with thioflavin T (ThT). Based on the unique isothermal design concept, we successfully identified SARS-CoV-2 genomic RNA (gRNA) as low as 0.19 fM with excellent selectivity by applying only a single HP and further verified its practical diagnostic capability by reliably testing a total of 100 clinical specimens for COVID-19 with 100% clinical sensitivity and specificity. This study would provide notable insights into the design and evolution of new isothermal strategies for the sensitive and facile detection of SARS-CoV-2 under resource constraints.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-