UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Interactive motion planning with motion capture data

Permalink
https://escholarship.org/uc/item/7k5936bq

Author
Lo, Wan-Yen

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7k5936bq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO
Interactive Motion Planning with Motion Capture Data

A dissertation submitted in partial satisfaction of the
requirements for the degree
Doctor of Philosophy

in
Computer Science
by

Wan-Yen Lo

Committee in charge:

Professor Matthias Zwicker, Chair
Professor Henrik Wann Jensen, Co-Chair
Professor Samuel Buss

Professor Charles Elkan

Professor Victor Zordan

2012

Copyright
Wan-Yen Lo, 2012
All rights reserved.

The dissertation of Wan-Yen Lo is approved, and it
is acceptable in quality and form for publication on

microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2012

1ii

DEDICATION

To Mom and Dad.

v

EPIGRAPH

Your task is not to foresee the future,
but to enable it.

—ANTOINE DE SAINT EXUPERY

TABLE OF CONTENTS

SignaturePage iii
Dedication e e e, iv
Epigraph Vs
Table of Contents vi
Listof Figures ix
Acknowledgements Lo o oo xi
Vita . . o xiii
Abstract of the Dissertation Xiv
Chapter 1 Introduction 1
1.1 Related Work, 4

1.1.1 Reassembling Motion Fragments 4

1.1.2 Synthesizing Novel Poses 6

1.1.3 Motion Control Interfaces 7

1.2 Contribution 8

1.3 Dissertation Overview 9

Chapter 2 Search with Motion Graphs 10
2.1 Motion Representation 10

22 MotionGraphs 11

221 Interpolated Motion Graphs 13

222 Well-connected Motion Graphs 14

2.3 Problem Formulation 15

2.4 Search Algorithms 17

2.4.1 Breadth-first Search & Depth-first Search 18

242 Greedy Best-first Search 18

243 A*Search 19

244 Randomized Search 21

2.5 Pruning Repeated States 22

25.1 Precomputed Search Trees 23

2.5.2 Precomputed Search Graphs 24

26 Summary. 27

Vi

Chapter 3

Chapter 4

Chapter 5

Bidirectional Search with Motion Graphs 29

3.1 Contributions 29
3.2 Bidirectional Search 30
321 Overview e e 31
3.22 Dynamic Cut Adjustment 32
3.23 Merging Two Search Trees. 34
3.3 Intuitive Motion Control with Strokes 35
3.3.1 Input Stroke Analysis 36
3.3.2 Bidirectional A*Search 39
3.3.3 Optimality Analysis 41
34 Results 42
341 Performance. 43
342 Control 45
343 Scalability, 46
35 Conclusions 49
Reinforcement Learning 52
4.1 Markov Decision Process 53
41.1 Policy Iteration 56
41.2 Valuelteration 58
42 Reinforcement Learning 60
421 Exploration 62
422 Model-based Learning 63
423 Model-free Learning 64
4.3 Learning Motion Controllers 66
43.1 Problem Formulation 67
43.2 Continuous State Space 69
433 Summary 71
Real-time Planning with Parametric Motion 74
5.1 Contributions 74
52 Learning Motion Controllers 75
521 Kernel-based Reinforcement Learning 76
52.2 Tree-based Fitted Iteration Algorithm 78
5.3 Incorporating Parameterized Motion Groups 81
54 Results 85
54.1 MotionPlanning 87
5.4.2 Extra-trees Regression 88
5.4.3 Parametric Synthesis 90
5.4.4 Near-optimal Control 91
55 Conclusions 91

vii

Chapter 6

Chapter 7

Bibliography

Learning with Adaptive Depth Perception 94

6.1 Contributions 95
6.2 State Representation 97
6.3 Hierarchical State Model 99
6.4 Adaptive Learning L. 100
6.5 Results 103
6.5.1 ExperimentSetup. 105
6.5.2 Depth Perception 106
6.5.3 Adaptive Depth Perception 107
6.54 Optimality 110
6.5.5 Generalizability 112
6.5.6 SurvivalGame 113
6.6 Conclusions 114
Conclusions e 117
71 FutureWork 118
.................................... 121

viii

Figure 1.1:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:

Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:

Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:

Figure 3.13:

Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 4.4:
Figure 4.5:

Figure 5.1:
Figure 5.2:
Figure 5.3:

Figure 5.4:
Figure 5.5:
Figure 5.6:

LIST OF FIGURES

Motion capture techniques. 2
An example motion graph. Lo 12
An example interpolated motion graph. 13
An example well-connected motion graph. 14
Expanding a search tree with depth-first search. 17
Repeated states of searching with a motion graph. 22
Precomputed search tree and precomputed search graph. . . 25
Bidirectional search. 33
Similar strokes under different perspectives have different

Meanings. 36
Visualizing the distance function and chronological flow of

aninputstroke. L Lo 37
Merging two partial solutions with warping. 39
Directly merging two partial solutions. 41
Motion sequences obtained from our algorithm. 43
Performance comparison between A*, bidirectional A* with

and without cut adjustment. 0L 45
An editing session with our sketch interface. 46
An input stroke and the synthesized motion.. 47
Results from A* and bidirectional A*. 48
Performance comparison between A* and bidirectional A*. 49
Results from A* and bidirectional A* with an interpolated

motiongraph. o L oo 50
Performance comparison between A* and bidirectional A*

with an interpolated motion graph. 50
Modeling a navigation problem with MDP. 54
Discrete-time Markov decision process. 55
Reinforcement learning allows an agent to learn by interact-

ing with the environment. 61
An MDP specifying the problem of motion planning. 68
Comparisons of different function approximators. 73
lustration of one step in our tree-based fitted iteration. . . . 79
Parameterized groups for the navigation controller 83
Finding the optimal blending parameter in a parameterized

GIOUP. . o v o o it e 85
State variables for the grasping and guidance controller. . . . 86
Statistics of the resulting controllers.. 87
The greedy strategy in the guidance controller. 88

X

Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:

Figure 5.11:
Figure 5.12:

Figure 6.1:
Figure 6.2:
Figure 6.3:

Figure 6.4:
Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:
Figure 6.9:

Figure 6.10:
Figure 6.11:

Figure 6.12:
Figure 6.13:

Figure 6.14:

Value function of the navigation controller. 89

Comparison between previous and our regression method. . 89
Value function of the grasping controller. 90
Comparison between parametric and non-parametric con-

trollers. L 91
Comparison of different grasping controllers. 92
Real-time near-optimal control. 93
Comparison between overhead view and first person view. . 98
Hierarchical state model. 99
Visualization of the depth perception space discretized with

different approaches. o Lo 101

Example of evaluating a Q-function using a regression tree. . 102
Illustration of building a regression tree with our hierarchical
regression algorithm. 000000 104
Performance comparison between a controller learned with
explicit parameterization of the environment and that learned

with depth perception. 107
Comparing depth perception of different resolutions with
our adaptive approach using 1 to 4 obstacles. 108
Visualization of varied density and shape of obstacles. 109
Comparing depth perception of different resolutions with
our adaptive approach using 6 to 9 obstacles. 110
Comparing depth perception of different resolutions with
our adaptive approach using 11 to 14 obstacles. 111
Quantification of the optimality and generalizability of the
resulting controllers. 0 0L 112

Comparison of running-time for simulating 10000 trajectories. 112
Generalizing controllers that are specifically trained for bars

to environments containing arbitrarily-shaped obstacles. . . . 114
Visualization of the learned strategy in the survival game. . . 115

ACKNOWLEDGEMENTS

Finally, it is time to write the Acknowledgments section. It has been
a long journey and I am standing right in front of the destination. I could
not have made such a long way without the support and help from so many
people.

First of all, I would like to thank my family, especially my parents, to
whom this dissertation is dedicated. They always give full support to my
decisions, so that I can pursue my dreams wholeheartedly in the past few
years. Without them, I would not be here today.

I would like to thank my advisor Prof. Matthias Zwicker. He gave me
the opportunity to start this amazing journey, and provided me with constant
support all along the way. I will definitely miss the time during which I could
walk directly into his office and then spend hours discussing research. I really
appreciate the guidance I received from him, and I believe it will continue to
have a positive effect on my career path in the future. I would also like to thank
Prof. Henrik Wann Jensen for many valuable discussions and inspirations.
Finally, I would like to thank the other members of my dissertation committee,
Samuel Buss, Charles Elkan, and Victor Zordan, for taking their time to read
this dissertation and to come to my defense.

I would also like to express my gratitude to Jeroen van Baar from Disney
Research Zurich. I had a great time working with him as a summer intern.
Without his inspiration, I would not have started and published a stereoscopic
project.

Many thanks go to all my colleagues at the UCSD graphics lab, in par-
ticular: Will Chang, Craig Donner, Toshiya Hachisuka, Wojciech Jarosz, Neel
Joshi, Arash Keshmirian, Krystle de Mesa, Iman Mostafavi, and Iman Sadeghi.
I enjoyed the countless discussions we had, either about research or life. I
appreciate the fact that they made the working environment stimulating and
cheerful, and that they always gave me a hand whenever I was stuck with re-
search problems. Further, special thanks go to Kuei-Chun Hsu and Yen-Lin
Lee for volunteering to be my MOCAP actors.

My thanks also go to my colleagues in the computer graphics group
at University of Bern: Daljit Singh Dhillon, Daniel Donatsch, Claude Knaus,

Fabrice Rousselle, and Sonja Schir. They have always created a very sociable

xi

and friendly atmosphere.
In the end, I would like to thank Julie Conner from UCSD and Dragana
Esser from University of Bern for helping me with the administrative work.
My involving with three countries, Taiwan, USA, and Switzerland, have caused
quite some trouble for them, but they have always been patient and helpful.
Parts of this dissertation are based on papers co-authored with my col-

laborators:

e Chapter 3 is based on “Bidirectional Search for Interactive Motion Syn-
thesis”, Wan-Yen Lo and Matthias Zwicker, Computer Graphics Forum (Pro-
ceedings of Eurographics EG'10), 2010.

e Chapter 5 is based on “Real-Time Planning for Parameterized Human
Motion”, Wan-Yen Lo and Matthias Zwicker, ACM SIGGRAPH / Euro-

graphics Symposium on Computer Animation, 2008.

e Chapter 6 is based on “Learning Motion Controllers with Adaptive Depth
Perception”, Wan-Yen Lo, Claude Knaus, and Matthias Zwicker, currently

under review.

I was the primary researcher and author of these papers.

xii

VITA

1982 Born, Taiwan

2004 B. S., National Taiwan University, Taiwan

2006 M. S., National Taiwan University, Taiwan

2009-2011 Graduate Research Assistant, University of Bern, Switzerland

2012 Ph. D., University of California, San Diego, USA
PUBLICATIONS

Wan-Yen Lo, Jeroen Van Baar, Claude Knaus, Matthias Zwicker, and Markus
Gross, “Stereoscopic 3D Copy & Paste”, ACM SIGGRAPH Asia, 2010.

Wan-Yen Lo and Matthias Zwicker, “Bidirectional Search for Interactive Motion
Synthesis”, Computer Graphics Forum (Proceedings of Eurographics EG’10), 2010.

Wan-Yen Lo and Matthias Zwicker, “Real-Time Planning for Parameterized
Human Motion”, ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, 2008.

Ying-Ruei Chen, Wan-Yen Lo, Yu-Pao Tsai, and Yi-Ping Hung, “Generation of
Binocular Object Movies from Monocular Object Movies”, SPIE Conference on
Stereoscopic Displays and Virtual Reality Systems XIV, 2007.

Pang-Hung Huang, Yu-Pao Tsai, Wan-Yen Lo, Sheng-Wen Shih, and Yi-Ping
Hung, “Calibration of Motorized Object Rig and Its Applications”, Journal of
Information Science and Engineering, 2007.

Pang-Hung Huang, Yu-Pao Tsai, Wan-Yen Lo, Sheng-Wen Shih, Chu-Song
Chen, Yi-Ping Hung, “A Method for Calibrating Motorized Object Rig”, Asian
Conference on Computer Vision, 2006.

Wan-Yen Lo, Yu-Pao Tsai, Chien-Wei Chen, and Yi-Ping Hung, “Stereoscopic
Kiosk for Virtual Museum”, International Computer Symposium, 2004.

xiii

ABSTRACT OF THE DISSERTATION

Interactive Motion Planning with Motion Capture Data
by
Wan-Yen Lo
Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Matthias Zwicker, Chair
Professor Henrik Wann Jensen, Co-Chair

Realistic character motion is an important component in media produc-
tion, such as movies and video games. More lifelike characters enhance story-
telling and immersive experience. To date, the most common approach to offer
high degree of realism is based on large databases of motion capture data.
The motion capture process, however, is expensive and time-consuming, while
only a limited number and range of motions can be captured at a time. As
a consequence, realistic motion synthesis has become a core research topic in
computer animation.

Many of the most successful techniques are based on fragmenting and
recombining motion capture data. The connectivity among the motion frag-
ments is encoded with a graph structure, and novel motions can be generated
with graph traversals. In addition, most systems allow a user to provide a num-
ber of constraints to specify the desired motion. By formulating the constraints
as a cost function, motion synthesis is cast as a graph search problem, and the
optimally-synthesized motion corresponds to the path through the graph that
minimizes the total cost. The search complexity for an optimal or near-optimal
solution, however, is exponential to the connectivity of the graph and the length

of the desired motion sequence. Synthesizing optimal or near-optimal motions

Xiv

is thus challenging for interactive applications. In this dissertation, we ex-
plore the two most significant research directions toward near-optimal motion
synthesis, including graph search and reinforcement learning, and present al-
gorithms for interactive and real-time character animation.

This dissertation begins by reviewing previous work on searching mo-
tion graphs. In particular, A* search is optimally efficient and considered the
state-of-the-art technique for optimal motion synthesis. However, applying A*
search on motion graphs is challenging when interactive performance is de-
manded. To make A* search more applicable to interactive applications, we
present a bidirectional search algorithm to improve the search efficiency while
preserving the search quality. This can reduce the maximal search depth by
almost a factor of two, leading to significant performance improvements. We
further demonstrate its application to interactive motion synthesis using an
intuitive sketching interface.

The second part of the dissertation consists of reinforcement learning
frameworks for real-time character animation. The character controller makes
near-optimal decisions in response to user input in real-time. The controller
is constructed in a pre-process by exploring all possible situations. We intro-
duce a tree-based regression algorithm, which is more efficient and robust than
previous strategies for learning controllers. In addition, we extend the learn-
ing framework to include parameterized motions and interpolation for precise
motion control. Finally, we show how to leverage character controllers by let-
ting the character “see” the environment directly with depth perception. We
derive a hierarchical state model and a regression algorithm to avoid the curse
of dimensionality resulting from raw vision input. The controller can be gen-
eralized to allow a character to navigate or survive in environments containing
arbitrarily shaped obstacles, which is hard to achieve with previous reinforce-

ment learning frameworks.

XV

o» Chapter 1 e

Introduction

“One sees clearly only with the heart. Anything essential is invisible to the eyes."

The Little Prince

ANTOINE DE SAINT EXUPERY

Realistic character motion plays a vital part in media production, such
as films and computer games. More lifelike characters make more believable
special effects and enhance immersive experiences. However, creating realistic
motions is a very challenging task. Since humans are adept at discerning the
subtleties of common movements, even small unnaturalness might break the
realism of the production. A few decades ago, rotoscoping was a popular way
to animate lifelike characters, where the animators draw the motion frame by
frame, by tracing over a live-action film, as illustrated in Figure 1.1a. In the
last decade, thanks to the invention of motion capture (mocap) systems, mo-
tion details of a live performer can be accurately and continuously recorded.
By placing a set of markers on a performer’s joints, the motion capture sys-
tem can record the 3D positions of the markers for reconstructing the whole
body motion, as shown in Figure 1.1b. Alternatively, some approaches build
a physical model of the character and simulate the animation under the laws
of physics. Although pure physically-based approaches can greatly reduce
the costs of softwares, equipments, and personnel required to perform motion
capture, the generated motions tend to appear robotic.

With motion capture data, we are able to replay the movement on a
virtual character, and the resulting motion exhibits a high degree of realism.
However, with limited time and resources, it is not practical to capture every
possible body movement. Starting a capture process is also expensive and

time-consuming. Even though more and more organized mocap databases are

mvtwron
Max fLerscher

(a) Rotoscoping [Max Fleischer] (b) Motion capture [Wikipedia]

Figure 1.1: Motion capture techniques. (a) Fleischer’s rotoscope machine al-
lows an artist to draw on the transparent panel, onto which the images of
a film are projected. (b) Digital motion capture systems enable tracking the
markers placed on an actor’s body in 3D space. The recorded data can then be
used to animate digital characters.

available online, obtaining motions for a particular application is still difficult,
as not all desirable motions are accessible. How to make the best use of the
existing data for synthesizing novel but realistic motion has thus become an
important research topic.

One way that is commonly used in practice is to cut the capture motions
into pieces, and to synthesize novel motion by reassembling motion fragments.
Realism can be directly preserved in this way, as long as the motion pieces are
well concatenated. Users can also have controls over the final motion, such
as moving direction, or performing a specific action at a specific time. In the
computer game industry, connections among motion pieces are manually con-
structed into move trees, which are elaborate state machines that determine the
best motion based on the environment and user input. Although this approach
is reactive, it involves a large amount of manual work to craft carefully the state
machines and the rules specifying all potential state transitions. This becomes
particularly cumbersome in modern games that use thousands of individual
motion clips.

In recent years, several methods have been proposed to automatically
construct a graph for representing smooth transitions among motion frag-

ments. Most systems allow a user to provide a number of constraints to specify

the desired motion. Such constraints are formulated as a cost function. Mo-
tion synthesis is thus cast as a search problem for a path through the motion
graph that minimizes the total cost. The search complexity for an optimal or
near-optimal solution, however, is exponential to the connectivity of the graph
and the length of the desired motion sequence. Hence, there is often a tradeoff
between performance and optimality, although both are critical for interactive
applications. In interactive applications, user inputs arrive continuously and
the environment changes dynamically, so in order to make the character re-
sponsive, time lag is not allowed. The quality of the solution is equally impor-
tant, since the optimal path on a motion graph often leads to the most natural
motion. Nevertheless, despite many advances in character animation, gener-
ating highly responsive and realistic motions in real-time remains a difficult
problem.

In this dissertation, we explore the two most significant research di-
rections toward near-optimal motion synthesis, and present algorithms for in-
teractive and real-time character animation. We first explore techniques on
searching with motion graphs, and present a bidirectional search algorithm
to improve the search efficiency while preserving the search quality. This is
orthogonal to many existing search algorithms and can reduce the maximal
search depth by almost a factor of two, leading to significant performance im-
provements. We demonstrate its application to interactive motion synthesis
using an intuitive sketching interface.

We also explore reinforcement learning frameworks for real-time charac-
ter animation. We introduce a tree-based regression algorithm, which is more
efficient and robust than previous strategies for learning character controllers.
We also extend the existing frameworks to include parameterized motions and
interpolation for precise motion control. Finally, we show how to leverage
character controllers by letting the character “see” the environment directly
with depth perception. We derive a hierarchical state model and a regression
algorithm to avoid the curse of dimensionality resulting from raw vision input.
The controller can be generalized to allow a character to navigate or survive in
environments containing arbitrarily shaped obstacles, which is hard to achieve

with previous reinforcement learning frameworks.

1.1 Related Work

In this section, we give an overview of related research work in character
animation. We first summarize methods based on splitting and reassembling
motion capture data, among which motion graphs and reinforcement learning
are most related to our work, and will be further introduced in Chapter 2 and
Chapter 4 respectively. Next we review methods for synthesizing novel poses
that cannot be generated by reassembling input data. These methods include
interpolation and dynamic approaches. We have used interpolation in our
work (Chapter 3 and Chapter 5) for precise motion control, but the dynamic
approaches are summarized here for completeness. In the end, we discuss
varied motion control interfaces, and we will present our sketch interface in
Chapter 3.

1.1.1 Reassembling Motion Fragments

Schodl et al. [69] develop the concept of video textures in image-based
graphics, allowing a continuous, infinite video stream to be synthesized from
a short video clip. They achieve this by analyzing the input video to identify
appropriate transitions between two non-subsequent video frames. By rear-
ranging the video frames with respect to the transition rules, novel but similar
looking video of arbitrary length can be synthesized. Video textures subse-
quently inspired many approaches in computer animation that synthesize re-
alistic motions by piecing together example motions from a database.

In computer animation, Pullen and Bregler [63] break the captured data
into fragments and rearrange them to meet user-specified keyframes. Motion
graphs and related approaches [31, 1, 38] encode how the motion fragments
may be reassembled in different ways using a graph structure, where nodes
correspond to poses from the database, and edges represent transitions be-
tween similar poses. These techniques generate new motions by building walks
on the graph, transforming motion synthesis into a graph search problem. Ko-
var et al. [31] use depth-first search to obtain graph walks. They improve the
efficiency of naive depth-first search using a branch-and-bound strategy and
incremental search. Lee et al. [38] use greedy best-first search and traverse

only a fixed number of frames to maintain a constant rate of motion. Arikan et

al. [2] use dynamic programming to rearrange the motion fragments in a hier-
archical way, and allow users to specify what should happen at what time. Lee
et al. [41] use smaller environment-specific motion graphs as building blocks,
with which the users can compose a large and complex virtual environment.
The characters can navigate through and interact with the environment in real-
time.

In the systems where the users can specify constraints on the synthe-
sized motion, the results are evaluated with a cost function. The optimal solu-
tion corresponds to the fragment rearrangement that minimizes the total cost.
However, the complexity of finding the optimal solution is proportional to the
size of database. To speed up the computation, Lau and Kuffner [35] manually
created a behavior finite-state machine, which defines the movement capabil-
ities of a virtual character. They define the finite-state machine with only a
very small number of nodes, so that the search space is highly reduced. They
also show how pre-computation can be leveraged to increase runtime perfor-
mance [36]. Zhao et al. [92] propose an automatic approach to select a good
subset from the original database, in order to reduce the size and improve the
performance of a motion graph.

More recently, reinforcement learning approaches have got consider-
able attention for real-time character animation. Reinforcement learning can
be used in a pre-processing stage to create an optimized motion controller,
which assembles a motion stream from motion fragments in real-time to mini-
mize a long-term cost [39, 22, 81]. McCann and Pollard [50] integrate a model
of user behavior into reinforcement learning, enabling highly responsive real-
time character control. Lee et al. [43] present methods for constructing complex
individual and connecting controllers over an automatically selected compact
set of motion clips. Lee and Popovié¢ [42] present a method to determine the
appropriate reward function in the reinforcement learning framework, so as
to infer the behavior styles from a small set of examples. Wampler at el. [82]
extend the reinforcement learning framework with game theory to generate
controllers in two-player adversarial games. Levine et al. [46] combines rein-
forcement learning with heuristic search to enable space-time planning in a

highly dynamic environment.

1.1.2 Synthesizing Novel Poses

Although the approaches that rely on reassembling motion fragments
have emerged as primary sources of realistic character animation, their major
limitation is the lack of continuous properties of motion. Since the motion
fragments only constitute a discrete representation of all possible motions, it is
difficult to gain precise character control, e.g. grasping an object at a specific
location. Therefore, a number of methods have been proposed to utilize the
captured data to synthesize novel but realistic motions.

Interpolation is a common approach in many areas, and can be used to
create novel motions that have specific kinematic or physical attributes [86, 65].
Kovar and Gleicher [29, 30] proposed an automated method for identifying
and registering logically similar motions. They also build a continuous pa-
rameterized motion space for similar motions that provide efficient control for
interpolation. Mukai and Kuriyama [55] improve motion interpolation with
the use of geostatistics, treating interpolation as statistical prediction of miss-
ing data in the parametric space. Safonova and Hodgins [67] analyze interpo-
lated human motions for physical correctness and show that the interpolated
results are close to the physically-correct motions. Cooper et al. [12] proposed
active learning to adaptively sample the parametric space so that the space can
be well sampled with a reduced number of clips. Researchers have also com-
bined motion graphs with parametric synthesis to create parameterized motion
graphs [71, 20, 68]. In addition, Zhao and Safonova use motion interpolation
to increase the connectivity of motion graphs [93].

Another group of approaches integrates dynamics of human motion to
compute joint angles and velocities to animate a character. Since physical cor-
rectness itself does not guarantee motion naturalness, researchers have pro-
posed learning dynamic controllers automatically from captured motions [94,
75, 13, 54]. Statistical models can also be used to approximate human motion
dynamics for estimating a character’s pose at each possible state [19, 8, 83, 89].
Liu et al. [48] incorporate several biomechanical properties into the dynamic
model, and introduce an algorithm for extracting physical parameters from
motion capture data, in order to generate novel motions in the same style.
Lau et al. [34] use a dynamic Bayesian network to synthesize natural spatial

and temporal variations from a small set of captured data. Recently, Ye and

Liu [88] present an optimal feedback controller, with which a motion capture
sequence can be adapted in real-time to changes of environment and physical

perturbations.

1.1.3 Motion Control Interfaces

Intuitive user interfaces are essential for effective motion synthesis ap-
plications. With the increasing popularity in motion capture devices and the
improvements in character animation research, today’s applications often in-
clude characters with a rich set of behaviors. Accordingly, it becomes increas-
ingly difficult to control varied motions with conventional interfaces, such as
joysticks, game pads, mice, or keyboards, since the actions have many more de-
grees of freedom than can be specified directly. In this section, we review some
research works that utilize non-conventional user interfaces to make more in-
tuitive control.

Sketch-based approaches allow a user to generate a wider variety of
motions [79, 60] or to edit existing motions [53] by drawing simple strokes.
Thorne et al. [79] design a gesture vocabulary, where each gesture alphabet
corresponds to a specific motion, such as jump, skate, or flip, and allow a
user to specify a motion by combining gesture alphabets. The input sketch
is automatically segmented, parsed, and converted into a sequence of motion.
Instead of building a gesture vocabulary, Oshita [60] determines a motion from
the semantics associated with the source and target of a stroke. Both meth-
ods are simple to use for novice users, but as the number of motion primi-
tives increases, building an intuitive mapping from motion primitives to stroke
patterns becomes very difficult. Min et al. [53] apply statistical analysis tech-
niques to a set of capture data containing similar motions, and construct a
low-dimensional deformable model to represent the motion. They allow the
user to sketch timed trajectories in screen space, and the system automatically
generates similar, but novel, motions that match the speeds and trajectories
defined by the input sketches.

Performance-based approaches allow the user to control the full-body
motion of the avatar by directly acting out the desired motion in a perfor-
mance animation system. Some approaches utilize computer vision techniques

to reconstruct motions from video streams [38, 64, 7], while some others rely

on special devices to ease the process of performance capture. Yin et al. [90]
developed the FootSee system that estimate the user’s pose by measuring the
foot pressure. Slyper and Hodgins [74] sew multiple accelerometers on the
performer’s shirt and animate the avatar by continuously matching the ac-
celerometer readings with the motion capture data. Shiratori and Hodgins [72]
make use of the acceleration sensing provided by the Wiimote, allowing the
user to control the avatar by acting with Wiimote in hands or on the legs. Al-
though it is intuitive for the user to control the motion with direct acting, the
avatar’s ability is limited to what can be performed. On the contrary, with
puppet interfaces [25, 57, 91], the user can specify difficult motions effortlessly
by manipulating puppets equipped with sensors.

1.2 Contribution

The contributions of our work can be summarized as follows:

e Bidirectional search on motion graphs: We present a bidirectional
search algorithm to improve the search efficiency for near-optimal motion
synthesis using motion graphs. Our approach can reduce the maximum
search depth by almost a factor of two, leading to significant performance
improvements. To fully exploit the potential of bidirectional search, we
propose to dynamically divide the search space into two even halves, and
use efficient data structures to limit the overhead required to merge the

search results.

o Intuitive sketching interface for interactive motion synthesis: As mo-
tion databases grow bigger, controlling varied motions with conventional
interfaces becomes increasingly difficult. Even with traditional sketch-
ing systems, users still need memorize a list of mappings from inputs to
motions. Our system, however, does not require any memorization but
allows users to control the motion intuitively by sketching a trajectory on
a specified body part. This is achieved by searching and composing a

sequence of motions whose projected trajectory best matches the input.

e Precise and real-time motion control: We present an approach to incor-

porate parameterized motions and interpolation into the reinforcement

learning framework. This allows us to control characters precisely with a
limited amount of input data. We use a tree-based fitted iteration algo-
rithm to learn control policies. This approach is more flexible and more
robust than previous methods to construct motion controllers using rein-

forcement learning.

e Autonomous characters with depth perception: In traditional reinforce-
ment learning frameworks, the state models are explicit descriptions of
the environment, which need to be carefully parameterized to limit the
dimensionality. We propose a method to skip this design phase, by letting
the character “see” the environment directly with depth perception. We
avoid the “curse of dimensionality” by introducing a hierarchical state
model and a novel regression algorithm. We demonstrate that our con-
trollers allow a character to navigate or survive in environments contain-
ing arbitrarily shaped obstacles, which is hard to achieve with existing

reinforcement learning frameworks.

1.3 Dissertation Overview

This dissertation is organized as follows. Chapter 2 reviews the funda-
mental concept of motion graphs and summarizes varied graph search algo-
rithms for online and offline motion synthesis. Chapter 3 introduces our bidi-
rectional search strategy using motion graphs, and demonstrates its efficiency
with our intuitive sketch interface for interactive motion synthesis. Chapter
4 reviews reinforcement learning and describes the details of constructing a
motion controller with reinforcement learning. Chapter 5 introduces our ap-
proach to incorporate parameterized motions and interpolations in reinforce-
ment learning frameworks for precise motion control. Chapter 6 presents our
motion controllers with adaptive depth perception. Chapter 7 concludes the

dissertation with a summary and directions for future work.

o» Chapter 2 e
Search with Motion Graphs

“Again, you can’t connect the dots looking forward; you can only connect them
looking backwards. So you have to trust that the dots will somehow connect in

your future."

STEVE JOBS

Realistic motion synthesis is a core topic in computer animation. Many
of the most successful techniques are based on recombining motion fragments
using motion graphs. In this chapter, we first clarify the notations in Section 2.1.
We review the basic concept of motion graphs in Section 2.2 and formulate
motion synthesis as a search problem in Section 2.3. We then discuss several
search algorithms that are used in previous work for motion synthesis, and
analyze their optimality and time efficiency in Section 2.4. In Section 2.5, we
address the practical issue of handling repeated states to avoid wasting time
on searching the same states over and over again. Finally, we conclude this

chapter in Section 2.6.

2.1 Motion Representation

In character animation, the human body is typically modeled with a
rigid skeleton. A skeleton is represented hierarchically as a tree, in which
joints are nodes and bones are links, and there is no cyclic bone connection.
The root is usually located at the pelvis joint, or at one of the foot joints. A pose

or a motion frame is thus defined as,

f = (xO/QO/Q1/--~IQn)/ (2]-)

10

11

where xp and gp denote the translation and rotation of the root joint, and
q1,---,qn denote the rotations of all the other joints. From this representation,

we can use forward kinematics to derive all the joint positions,

p = (x0,X1,...,%n). (2.2)

A motion consists of a series of poses over time, m = (fi,...,fr), where f;
denotes the pose at discrete time step f, and T is the length of the motion. The
motion can be cut into smaller pieces for reassembling, and the terms motion
segments, motion clips, or motion fragments can be used interchangeably to refer

to the pieces.

2.2 Motion Graphs

Inspired by video textures [69], which are seamless streams of video
synthesized from example footage, motion graphs are developed to allow a
long sequence of motion to be synthesized from short motion clips. A motion
graph is a directed graph, constructed by taking a set of motion capture clips
as input. Each frame in the input motion clips is represented as a graph node,
and two nodes are connected by a directed edge if there exists a smooth tran-
sition from one frame to another. An example of a motion graph is shown in
Figure 2.1.

A few approaches have been proposed to build the motion graphs au-
tomatically, by computing smooth transitions among frames. To compute the
similarity of two frames i and j, Kovar et al. [31] propose to evaluate the mini-
mal weighted difference in joint positions:

A(i/j) = min HW(Pi - TG,x,zpj) ||2 (2.3)

0,x,z

where the linear transformation Tj , ., aligns the two sets of joint positions p;
and p; with a rotation around the up axis of 6 degrees and a translation of
(x,z) on the ground. The weight vector w assign difference importance for
each joint.

If A(i,j) is low, node i and node j are similar, then node i can be con-
nected to node j+ 1 (successor of node j), and node j can be connected to
node i + 1 (successor of node i). Originally, nodes are only connected to their

12

P AR

»(2

v
©

v
®

v
©

v

©)
v

©
v
=
=)

A
A EAD A

Figure 2.1: An example motion graph formed with two motion clips. Each
graph node corresponds to a pose (frame) of the input motion clips and an
edge represents a smooth transition between two nodes. The solid edges are
original from the motion sequences, and the dotted edges are additional edges
found between similar poses.

successor nodes according to the motion sequence. The similarity metric is
used to compute a dense transition matrix for every pair of motion clips. The
transition value at row i and column j is A(i, j) thresholded by a user specified
value for naturalness. To make the set of new edges compact, only transitions
that represent local minima in the matrix are added to the graph. These new
edges create natural transitions that are new to the motion capture data. Since
not every node is guaranteed to have outgoing edges, in the end the largest
strongly connected component is extracted from the graph to remove all dead
ends.

Once the motion graph is constructed, a path on the graph corresponds
to a motion generated by connecting the poses along the path. Traversing
the graph randomly will generate a continuous stream of motion. However, to

have control over the final motion, e.g. requiring the character to perform some

13

<0
o
-0
o

w=0.5 w=0.5
—0®

w=0.8 w=0.8
(a) Motion graph (b) Interpolated motion graph

Figure 2.2: An example interpolated motion graph (b) built from a motion
graph (a).

action at some specific time, we need to search a path on the graph that fulfills
the constraints. Motion synthesis is thus cast as a graph search problem.
Before explaining how to formulate motion synthesis as a graph search
problem in the next section, we introduce two variations of motion graphs: in-
terpolated motion graphs and well-connected motion graphs. Once built, these
variations can be treated as ordinary motion graphs in any graph search frame-
work. In Chapter 3, we will show comparisons by applying our bidirectional
search algorithm on well-connected motion graphs and interpolated motion

graphs.

2.2.1 Interpolated Motion Graphs

Safonova and Hodgins [68] construct an interpolated motion graph (IMG)
that supports interpolation of paths through the original motion graph. Con-
structing interpolated motion graphs is like taking the product of two identical
motion graphs, as illustrated in Figure 2.2. Each node in the IMG is defined as
(a1, a2, w), where a1 and a; correspond to two nodes in the input motion graph,
and w is the interpolation weight. Hence, the maximum number of nodes in
the IMG is N?2W, where N is the number of nodes in the input motion graph,
and W is the number of possible weight values. An IMG node (a1,ay,w) is a
successor of another IMG node (a,a5,w’) if a1 is a successor of 4] and a5 is a

successor of @), in the original motion graph. The strength of this representa-

14

o—0—0—0-—"0 Oo—0—0—0—0
O0—0—">0—0—0 w=02 @) ©)
O—O0—"0"—">0-—"0 w=05 @)
O—0—0—0-—">0 w=08 @) @)
o—0O0—0—0—0 o—0O0—0—0—0
(a) Before node reduction (b) After node reduction

O Original nodes —— Natural transition

O Interpolated nodes Created transition

Figure 2.3: An example well-connected motion graph before (a) and after (b)
the node reduction step. The input motions are interpolated with three differ-
ent weights to generate the interpolated nodes. A transition is created between
two nodes (either original or interpolated) if the poses are similar.

tion is that it allows the adaptation of existing motions through interpolation
while also retaining the natural transitions present in a motion graph. How-
ever, the result IMG is inherently very large. Safonova and Hodgins present a
few methods to reduce the graph size, and please refer to their paper for more
details.

2.2.2 Well-connected Motion Graphs

Zhao and Safonova [93] introduce a new method for building motion
graphs, and the outcome of their algorithm is a motion graph called a well-
connected motion graph, which contains only smooth transitions but has very
good connectivity. One fundamental problem of traditional motion graphs is
that the quality of the generated motion depends largely on the connectivity
of the graph and the quality of transitions in it. Achieving both criteria simul-
taneously, however, is difficult. Good connectivity requires transitions to exist
between most pairs of poses, but this might degrade the motion quality, which
can only be obtained when transitions happen between very similar poses. To
resolve the tradeoff, their algorithm builds a set of interpolated motions, which

contain many more similar poses than the original data set, and then constructs

15

a graph from all original poses and interpolated poses, as shown in Figure 2.3a.
Finally, they reduce the graph size by minimizing the number of interpolated
poses present in the graph, as shown in Figure 2.3b. The result graph is still a
motion graph, which can benefit from all the standard techniques for motion

graphs, but has good connectivity without sacrificing the transition quality.

2.3 Problem Formulation

In this section, we describe how to formulate the search problem for
synthesizing a motion that satisfies user specifications while minimizing a cost
measure. Before going into the details, we first provide some notation. The
motion graph is denoted as G = (V, &), where V is the set of nodes or poses,
and & is the set of edges. The state space, S, is defined as the range of all
possible states the character might be in. The definition of the state X € &
is problem dependent, but at least includes the pose of the character. For
example, in the commonly addressed ground navigation problem, where the
character is required to move from a start position to a goal position, the state
can be defined as:

X =(a,x,z20), (2.4)

where a € V is the index of the current pose, x and z are the global position
of the character on the ground plane, and 0 is the global orientation of the
character around the up axis.

The search problem is defined by the following components:

e The initial state that the character starts with, which includes the start

pose and other problem dependent properties.

e The set of actions available for the character and a successor function that
returns all successor states of a given state. Given a state X = (a,...), the
set of available actions is decided by the motion graph G and is defined
as A(X) = {d'|(a,a’) € £}. The successor function F(X) returns a set of

states that can be reached from X by applying actions in A(X).

e The goal test, which determines if a state is a goal state. For example, in

the ground navigation problem, a state, X = (a,x,z,0), is a goal state if

16

a corresponds to a resting pose, ||x — x¢|| < ¢, and ||z — z¢|| < ¢, where
(xg, zg) is the goal position, and ¢ represents the tolerable deviation from
the goal position.

e The cost function that assigns a numeric measure to each path, which
is defined as a sequence of states starting from the initial state. Typi-
cally, the cost function consists of a transition cost to ensure smooth tran-
sitions between motion fragments and a state cost to evaluate how well
the constraints are fulfilled. The transition cost can be defined using
Equation 2.3, while the state cost is problem specific. For example, if the
character is expected to follow some path provided by a user, the state
cost consists of the deviations from the path. Also, the state cost can be
set to be proportional to the distance traveled to favor shorter and more
intuitive solutions.

With the problem formulated, we can start the search by building an
explicit search tree. The search node in the search tree is defined as

N = (X, f(X),N), (2.5)

where X € S is the corresponding state, f : & — R is the cost function that
returns the accumulated cost from the initial state to X, and N’ denotes the
parent node. The root of the search tree is a search node containing the initial
state. Let us denote Q as the collection of leaf nodes to be expanded. Expanding
a search node means generating a set of successor nodes that contain the states
returned by the successor function. Initially Q consists of only the root node.
The search is done by iteratively removing a node from Q for expansion until
Q is empty. The goal test should be applied before expanding the selected
node. If the selected node contains a goal state, a feasible solution is found and
its expansion is skipped. Otherwise, the selected node is expanded, and all the
successor nodes are inserted into Q. A number of expansions of a search tree
are illustrated in Figure 2.4. Finally, the optimal solutions are defined as those
with the lowest cost among all feasible solutions.

The choice of which search node to be removed from O is determined
by the search strategy. In the next section, we will discuss a few popular search
algorithms for motion synthesis.

17

O Pose index
(O Unexpanded search node
@ Expanded search node

Figure 2.4: Four expansions of a search tree, built with the motion graph in
Figure 2.1. The state is defined as X = (a), where a denotes the current pose
of the character, e.g. the initial state contains pose 6 in the motion graph. At
each stage, the search node to be expanded is indicated by a marker. The
expansion order is decided by the search strategy, and this example illustrates
the depth-first search.

2.4 Search Algorithms

Once the problem of motion synthesis is formulated as a search prob-
lem, it can be solved with a standard search algorithm. The search algorithms
are extensively used in practice, and among the best-known applications are
route-finding (e.g. in computer networks or travel planning systems), robot
navigation, and protein design.

Generally, the search strategies can be classified into two categories: un-
informed search and heuristic search [66]. With uninformed search strategies,
there is no additional information about the states beyond that provided in
the definition. These strategies can only generate successors and distinguish a
goal state from a nongoal state. On the contrary, the heuristic search strategies
utilize problem-specific knowledge to prioritize the search nodes. We will dis-
cuss examples of uninformed search in Section 2.4.1, and examples of heuristic
search in Section 2.4.2 and Section 2.4.3. All these algorithms can be used to
find the optimal solution. However, the search complexity grows exponentially
with the depth of the search tree. A few variations of the search algorithms are

thus proposed for trading optimality for efficiency. We will discuss these vari-

18

ations along with the original search algorithms. Finally, in Section 2.4.4, we
discuss some randomized search algorithms aiming at finding a feasible solu-

tion quickly, but with no guarantee in the result quality.

2.4.1 Breadth-first Search & Depth-first Search

Breadth-first search (BFS) and depth-first search (DFS) are the two most
popular uninformed search strategies. BFS always chooses the shallowest node
in Q for expansion, while DFS always chooses the deepest one, until a solution
is found (which may or may not be optimal) or until Q is empty. Figure 2.4
illustrates a few steps of the DFS algorithm. Hence, either approach needs to
expand the full search tree to find the optimal solution, and these naive ap-
proaches are very demanding in both computation and memory requirement.

In order to apply DFS for motion synthesis with motion graphs, Kovar
et al. [31] improve the search efficiency with a branch and bound strategy and
incremental search. The branch and bound strategy is used to prune branches of
the search that are incapable of yielding the optimum, by keeping track of the
current best goal state X,,;. Thus, a partial path can be halted if the accumu-
lated cost is already bigger than f(X,,:). Branch and bound strategy reduces
the number of search node expansions without scarifying the optimality. How-
ever, the search complexity is still exponential to the search depth.

Incremental search (or limited-horizon search) is further applied to en-
sure interactive performance, and the solution is generated incrementally. At
each step, DFS is used to find an optimal subsequence of n frames, where n
is used to maintain a constant rate of motion, and the final node is used as a
starting point for another search. Although each partial solution is optimal, the
final solution is sub-optimal. The value of n also controls the tradeoff between

efficiency and optimality.

2.4.2 Greedy Best-first Search

Greedy best-first search and A* search (Section 2.4.3), belong to the fam-
ily of heuristic search algorithms. Heuristic search finds solutions more ef-
ficiently than uninformed search by using problem-specific knowledge. The

key component of heuristic search is a heuristic function that imparts addi-

19

tional knowledge to the search algorithm. The heuristic function is denoted
as h : § — R that returns the estimated cost of the cheapest path from the
given state to a goal state.

Greedy best-first search always expands the node in Q that is closet to
the goal, i.e. the node with lowest value of /#(X). This algorithm is named
greedy for that at each step it tries to get as close to the goal as it can. This
algorithm may find a feasible solution more efficiently than uninformed search
algorithms. To find the global optimal solution, however, it also suffers from
the fact that expanding the full search tree is necessary.

Lee et al. [38] allow a user to sketch a path through the environment
in their system, and use greedy best-first search to find a motion that follows
the path. Their heuristic function consists of two parts. The first part rewards
motion making progress to the goal, and the second part rewards facing direc-
tions that point toward the goal. To maintain a constant rate of motion, they
also apply incremental search by diving the sketched path into many sub goal
points. They noted that this approach could result in local minima where the
character can no longer reach the goal, but in practice it is not a problem, since

the user does the high-level planning by sketching an appropriate path.

2.4.3 A* Search

A* is the most widely-known heuristic search, and it evaluates a node
by combining f(X), the accumulated cost to reach the node, and h(X), the
estimated cost to get from the node to the goal,

8(X) = f(X) + h(X). (2.6)

The function ¢ : & — R returns the estimated cost of the cheapest solution
through state X from the initial state to the goal. A* search always expands the
node in Q that minimizes g, and the search terminates either when Q is empty,
or when

VN = (X, f(X),N) € Q: g(X) > f(Xopt), 2.7)

where X,y is the current best goal state. A* search is optimal if the heuristic
function h is admissible, that is, if h(X) never overestimates the cost to reach the

goal. Since f(X) is the actual cost, with an admissible heuristic /1, g(X) never

20

overestimates the real cost through X. Hence, we can conclude that when
Condition 2.7 holds, X, provides the optimal solution. Furthermore, A* is
optimally efficient for any given heuristic function: no other optimal algorithm
is guaranteed to expand fewer nodes than A* [66].

A* search is optimal and optimally efficient, so it is becoming a favor-
able approach in computer animation for searching an optimal sequence of
motions [35, 68]. However, the quality of the heuristic function is a critical
factor of the search performance. Informative heuristic functions can signifi-
cantly prune the search tree, guiding the search toward the optimal path, while
uninformative heuristic functions require exhaustive exploration of the search
space. Safonova and Hodgins [68] show that heuristic functions usually speed
up the search by several orders of magnitude and is often the determining fac-
tor in whether a solution can be found. In their system, they allow a user to
sketch a path through the environment, and a motion is synthesized to follow
the path. To estimate the lower bound of the cost-to-goal value 1 (X), they ap-
ply Dijkstra’s algorithm to find the shortest path to the goal, and then multiply
the shortest distance (in meters) by an estimate of the minimum cost function
value required to traverse one meter. Additional heuristics are also provided
to support environmental constraints (e.g. picking, jumping, ducking, and sit-
ting).

Although A* search is optimally efficient, it is still an exponential search
method. To increase the size of motion graphs or to apply the search in interac-
tive applications, a few variants of A* search have been used to improve search

efficiency at the expense of optimality:

o Inflated A* inflates the heuristic with § > 1 to speed up the search, and
the new heuristic function becomes /'(X) = é6h(X). The inflated heuris-
tic is not necessarily admissible, so the solution is no longer optimal.
However, the cost of the solution is bounded above by ¢ times the low-
est cost. Since inflated A* search has a bound on the sub-optimality, it
is near-optimal. Lau and Kuffner [35] compare the synthesized motions
generated from A* search and inflated A* search, and note that there is
a treadoff between the search time and the quality of the output motion.

Please refer to their work for the detailed comparisons.

e ARA* (Anytime Repairing A¥) is an anytime heuristic search that tunes

21

the sub-optimality bound based on available search time [47]. ARA* starts
by finding a suboptimal solution quickly using a progressively inflated
heuristic and then gradually decreases ¢ until it runs out of time or finds
a provably optimal solution. While improving its bound, ARA* reuses
search efforts from previous executions in a way that the sub-optimality
bounds are still satisfied. Safonova and Hodgins [68] apply ARA* in
their work to find a globally optimal or near-optimal solution, and show
that the optimal path through the motion graph often leads to the most
intuitive result.

2.4.4 Randomized Search

Applying optimal or near-optimal search in online applications is chal-
lenging, especially when the search space is large. Hence, some algorithms
employ randomness and aim at finding a feasible solution as quickly as possi-
ble.

Arikan and Forsyth [1] propose a randomized search algorithm to allow
interactive synthesis of human motions. The algorithm starts by building a
set of valid random solutions. In each iteration, the solutions are mutated
by replacing some portion with another set of edges, and the mutations are
accepted only if they are better than the original solutions. The solutions are
iteratively refined until no better results can be obtained through mutations or
until a given time runs out. The search can be stopped anytime to return the
best solution found so far, and if the result is not good enough, the search can
also be resumed to get better solutions through further mutations and inclusion
of random solutions.

The Rapidly-Exploring Random Tree (RRT) planner is popular in motion
planning [26]. The basis of the RRT method is the incremental construction of
search trees that attempt to rapidly and uniformly explore the state space. This
can be considered as a Monte-Carlo way of biasing the search into the largest
Voronoi regions. Choi et al. [11] use RRT for global path planning in their
work. A RRT is rooted at the start point and grows to explore the free space by
iteratively sampling new nodes. They randomly sample a free configuration
(position and direction) and find its closest node belonging to the search tree.

If there exists a valid motion from the closet node to the sampled configuration,

22

X

2

. ’/‘/54 \1‘ \
QT > < 4
"~ iﬂ\\»
o -

U

move forward

move move
toward left toward right

St HN

-~

(a) A simplified motion graph (b) Ground navigation

Figure 2.5: (a) A simplified motion graph that contains only one node. (b)
A ground navigation problem where the state is defined as X = (a,x,z). The
initial state of the character is X;. With the motion graph in (a), there are
multiple ways to reach state X5, resulting in multiple search nodes containing
repeated states.

a new branch is added to the tree. This process repeats until the search tree
reaches the goal location. In addition, Shapiro et al. [70] use a bidirectional RRT
algorithm to correct input motions to obey constraints such as being collision-

free.

2.5 Pruning Repeated States

One of the most important complications to the search process is the
possibility of wasting time on expanding states that have been encountered
and expanded before [66]. However, repeated states are unavoidable when
searching with motion graphs, since the actions defined by the motion graph
are reversible, as shown in Figure 2.5. Repeated states can cause a solvable
problem to become unsolvable if the search algorithm does not detect them.
Detection usually means comparing the search node about to be expanded to
those have been expanded: if a match is found in the state space, then the
algorithm has discovered two paths to the same state and can discard one of
them [66].

One common solution to prune the repeated states is to use a set C to

keep track of the explored states. The set C can be implemented with a hash

23

table to allow efficient look up for repeated states: every time a node N is
expanded, the associate state X is inserted into C. To preserve optimality, we
also need to bookkeep the current lowest costs for reaching every state in C, so
whenever repeated states are detected, the more expensive path is discarded.
We use a similar approach in our work (Chapter 3) for pruning repeated states
and for merging two partial searches.

If the search algorithm is A*, we can avoid the overhead of bookkeeping
the lowest cost of expanded states, but ensure the optimal path to any repeated
state is always the first one by imposing an additional constraint on the heuris-
tic function. This requires the heuristic function to be consistent. A heuristic
function h(X) is consistent if for every node N = (X, ...) and every successor
N’ = (X’,...) of N, the estimated cost of reaching the goal from N is no greater
than the step cost of getting to N’ plus the estimated cost of reaching the gaol
from N/,

h(X) < f(X') = F(X) +h(X). 258)

Following the definition of consistency and Equation 2.6, the sequence of nodes

expanded is in non-decreasing order of g,
g(X') = f(X') + h(X') = h(X) + f(X) = g(X). (29)

Hence, in the search process, if the node selected for expansion is found re-
peating in C, it can be directly discarded, and the first expanded goal node is
guaranteed to be an optimal solution [66].

Although pruning repeated states is necessary, it introduces additional
computation overhead in run-time. In the rest of this section, we will discuss
some approaches that utilize precomputation to avoid handling repeated states
at run-time.

2.5.1 Precomputed Search Trees

Lau and Kuffner [36] precompute the search trees so that the optimal
motion sequence can be efficiently extracted in run-time through a series of
table lookups. The precomputed search tree is an exhaustive search tree built
off-line up to a certain depth d. They apply the precomputed search tree for
navigating characters in complex environments: given a goal position, the ob-

jective is to animate the character from the start position to the goal in a best

24

way without colliding with any obstacle. The state is defined as in Equation 2.4.
The search nodes are organized with a gridmap, which is a discretization of the
ground plane, and each node is stored in a cell according to the discretized
values of x and z. The discretization level and the scale of the gridmap are
parameters of the system. A cell in the gridmap may contain more than one
node, due to the repeated states, and they sort the nodes with respect to the
cost. An example precomputed search tree and the associated gridmap are
shown in Figure 2.6a.

At run-time, the precomputed tree is aligned with the character’s initial
state and is mapped onto the environment: if a cell in the gridmap is occupied
by an obstacle, the tree nodes corresponding to this cell and their descendant
nodes are blocked. A blocked node means it is not reachable. The search al-
gorithm starts by extracting the tree nodes stored in the cell that contains the
goal position. The algorithm then iterates through the nodes, in the ascending
order of cost, to see if any of them can successfully backtrack to the root with-
out being blocked. The first complete path is returned as the solution, which
is near optimal up to the resolution of the gridmap.

A downside of this approach is that if the goal position is distant from
the start position, the precomputed search tree may not be able to cover both
of them since it is only expanded up to a certain depth d. Increasing the value
of d, however, results in exponential growth of memory requirements. Hence,
for long sequences of motion, Lau and Kuffner use a fast global planner to
generate a coarse path from the start to the goal. This path is divided into
several sub-goals such that any two consecutive sub-goals are covered in the
range of the precomputed search tree. The final solution is a composition of

several partial solutions, and is no longer globally optimal.

2.5.2 Precomputed Search Graphs

Given a large state space, where most of the states can be reached from
many paths, a search graph is more favorable than a search tree, since the latter
needs to trade optimality for memory usage. The search graph is precomputed
by building an exhaustive search tree to cover the entire state space, but the
search nodes with same states are merged and the costs are stored along the

links, as shown in Figure 2.6b. The search graph can be traversed with any

25

A

(a) Precomputed search tree (b) Precomputed search graph

Figure 2.6: A precomputed search tree (a) and a precomputed search graph
(b) generated with the motion graph in Figure 2.5a in the ground navigation
problem in Figure 2.5b. The environment is discretized into 3 x 3 grids. The
transition costs are a, b, and c for “move toward right”, “move toward left”,
and “move forward” respectively. In the precomputed search tree (a), the ac-
cumulated costs are stored in the search nodes, and there may be more than
one search node stored in a grid (containing a same discretized state). In the
precomputed search graph (b), the transition costs are stored along with the
links, and only one search node is kept in a grid.

standard search algorithm in run-time to find a solution. However, in order
to find the optimal solution, the search algorithm needs to check whether a
node has been visited and whether the newly discovered path to the node
is better than the original one. If so, the search queue needs to be updated
according to the new cost, otherwise the optimal solution might be missed.
On the contrary, some search algorithms under some conditions can guarantee
that the newly discovered path is never better than the original one, e.g. A*
search with consistent heuristic or breadth-first search with constant link costs.
In these situations, there is no overheads in tracking the visited nodes, as the
newly discovered paths can be directly discards, and the first path reaching
the goal state is the optimal solution. Finally, the precomputed search graph
can take advantage of graph pruning algorithms, so that the graph size can be

much reduced in a preprocessing stage to speed up the search in run-time.

26

Safonova and Hodgins [68] build the search graph off-line by unrolling
the motion graph into the environment (Figure 2.5 illustrates how to unroll a
motion graph in Figure 2.5a into an environment in Figure 2.5b). The state is
defined as in Equation 2.4, and the values of the position and orientation are
discretized uniformly. Nodes with the same discretized values in the state can
then be merged into a single node. The search graph is inherently large, with
a size proportional to the size of the motion graph and the scale and resolu-
tion of the environment. To make the on-line search more efficient, Safonova
and Hodgins propose to compress the motion graph before unrolling it into
the environment. They first remove poses and transitions that are sub-optimal,
which will not appear in any optimal solution because there exists a lower cost
alternative. Next, they remove redundant poses and transitions in the motion
graph. Since motion graphs often include similar data in order to capture nat-
ural transitions between behaviors, many poses and transitions are redundant.
They report that these compression steps can significantly reduce the size of the
motion graph without affecting the its functionality. In run-time, they apply
ARA* search with a consistent heuristic function to search the precomputed
graph.

A probabilistic roadmap is another form of a search graph, which can be
built in the preprocessing stage and efficiently searched at run-time to achieve
interactive performance [10]. The nodes in a probabilistic roadmap are ran-
dom samples in state space. A pair of nodes are connected by an edge if there
exists a motion to animate the character from one node to another. The proba-
bilistic roadmap could be constructed to densely cover the entire environment.
Precomputing a dense roadmap, however, demands significant computational
resources. Alternatively, Choi et al. [11] present a lazy evaluation approach.
Given start and goal configurations, they incrementally add random samples
to the roadmap until a path between the start and the goal is found. Each new
sample is connected to the existing roadmap with limited-horizon A* search
algorithm. This approach gives a trade-off between enormous precomputation

costs and runtime performance.

27

2.6 Summary

In this chapter, we review the concept of motion graphs and explain how
to formulate the problem of motion synthesis as a standard search problem. We
also introduce a few search algorithms used in character animation for solving
the problem, including depth-first search, greedy best-first search, A* search,
and some randomized search techniques. Depth-first search and greedy best-
tirst search need to exhaust the search space to find the optimal solution, so
researchers usually apply these search techniques with some heuristic strate-
gies to trade in optimality for search efficiency. A* search is able to find the
optimal solution without exhausting the search space, but the search efficiency
strongly depends on the quality of the heuristic function. Two variants of A*
search, inflated A* and ARA*, are thus more applicable for on-line applications.
Although these variants only provide sub-optimal solutions, there is a bound
on the sub-optimality, so the solution quality can be controlled. Randomized
search techniques, on the contrary, aim at finding a feasible solution as quickly
as possible, so there is no guarantee about the quality of the solution.

Finally, we discuss two types of precomputed structures, precomputed
search trees and precomputed search graphs, that are built off-line to make
on-line search more efficient. In a precomputed search tree, all the search
nodes containing the same state are stored explicitly, so given a goal state, a
solution can be found efficiently by tracing from the goal state back to the root.
However, the precomputed search tree can only grow up to a certain depth, due
to memory limitation. If the distance between the start and goal states is bigger
than the range of the tree, a solution can only be found incrementally, and there
is no guarantee on the optimality. On the other side, in a precomputed search
graph, the search nodes containing the same state are merged into a single
node, so a node in the precomputed search graph may contain more than one
successor or predecessor. In run-time, a search algorithm is applied on the
precomputed graph to decide which successor node should be visited first.
The optimal solution can be efficiently found if the search algorithm ensures
that the first path to a node is always the cheapest, otherwise a data structure
is required for bookkeeping the lowest costs to reach the visited nodes. A main
advantage of the precomputed search graph is that it can be further pruned in

the preprocessing stage to speed up run-time search.

28

In the next chapter, we will present a bidirectional search framework
that is orthogonal to many existing search algorithms (e.g. BFS, DFS, A* and its
variants), and can reduce the maximal search depth by almost a factor of two,
leading to significant performance improvements. Since A* search is proved to
be optimally efficient, we will apply A* search in our bidirectional framework

to demonstrate the performance improvement.

o» Chapter 3 e

Bidirectional Search with Motion Graphs

“Where both reason and experience fall short, there occurs a vacuum that can be
filled by faith."

Sophie’s World
JoSTEIN GAARDER

In this chapter, we develop a novel method to improve the search ef-
ticiency for near-optimal motion synthesis using motion graphs. An optimal
or near-optimal path through a motion graph often leads to the most intuitive
result. However, as discussed in Chapter 2, finding such a path can be compu-
tationally expensive. Our main contribution is a bidirectional search algorithm.
We dynamically divide the search space evenly and merge two search trees to
obtain the final solution. This cuts the maximum search depth almost in half
and leads to significant speedup. Many applications can thus be improved to
achieve interactive performance. To illustrate the benefits of our approach, we
present an interactive sketching interface that allows users to specify complex

motions quickly and intuitively.

3.1 Contributions

A key contribution of this chapter is a bidirectional search algorithm to
improve the search efficiency for near-optimal motion synthesis. Search algo-
rithms have been widely applied on the motion graph for searching a sequence
of motion that fulfills user constraints [31, 1, 38, 10, 35, 68, 11]. The search
complexity for an optimal or near-optimal solution, however, is exponential to

the connectivity of the graph and the length of the desired motion sequence.

29

30

Applying these techniques for interactive applications is thus challenging. To
make the search algorithms more applicable for interactive applications, we
present a novel approach to run two searches simultaneously from both ends
of the desired motion. This allows us to reduce the search depth by a factor
of almost two, leading to a significant performance improvement. A core com-
ponent of our bidirectional search algorithm is a novel technique to efficiently
merge the two search trees to obtain one continuous motion sequence. We dy-
namically divide the search space to ensure both trees have similar height, and
we cache partial paths using hash tables so that we can merge the two trees
efficiently.

Our second contribution is an intuitive sketch interface for interactive
motion synthesis. Today’s video games include characters with a rich set of
behaviors. It becomes increasingly difficult to control varied motions with
conventional interfaces, such as joysticks, game pads, mice, or keyboards, since
they often require memorizing awkward keystroke combinations or gestures.
Some early works allow a user to sketch the path of the desired motion [38, 31],
while more recent works allow a user to generate a wider variety of motions
by drawing simple strokes [60, 79]. With these systems, however, users still
need to memorize a list of mappings between stroke patterns and motions. On
the contrary, our system does not require any memorization but allows users
to control the motion intuitively by sketching a trajectory on a specified body
part. Given a stroke input, we search and compose a sequence of motions
whose projected trajectory best matches the input. Interactive performance is

made possible with our bidirectional search algorithm.

3.2 Bidirectional Search

Bidirectional search has been explored in artificial intelligence and path
planning [66, 37]. The critical step is to design a mechanism to merge the two
partial searches, and to prevent two search frontiers from intersecting with each
other. Without proper designs, bidirectional search may lead to worse perfor-
mance than unidirectional search [62, 33]. Kandl and Kainz [28] presented one
of the first successful approaches to bidirectional search and demonstrated that

it can be more efficient than unidirectional search. They allow the search di-

31

rection to change once, and hash the frontier nodes in the first search to cut off
some branches in the reverse search meeting the opposite frontier. Although
their approach is not afflicted by the problem of search frontiers passing each
other, the search efforts cannot be well balanced unless the direction is changed
exactly when the search is halfway. Predicting the halfway search in advance,
however, is very difficult.

In our work, we exploit properties of the state space in motion synthesis
to design a bidirectional framework, where the search space is dynamically di-
vided into two even halves, and the two search trees can be efficiently merged
to obtain the final solution. We define a cut to split the search space so that
two search frontiers cannot pass each other. Since it is difficult to predict the
halfway search in advance, we allow the cut to be dynamically adjusted at
run-time. We hash the frontier nodes from both frontiers so that two partial
solutions can be efficiently merged. Finally, to accommodate the dynamically
adjusted cut, we provide a mechanism to efficiently update the hashing infor-
mation of both frontiers. Since A* search is optimally efficient and considered
the state-of-the-art technique for near-optimal motion synthesis (Section 2.4.3),

we demonstrate our approach using bidirectional A* search.

3.2.1 Overview

We propose a bidirectional algorithm that can make existing search al-
gorithms, especially A* and its variants, more efficient. If unidirectional search
has a branching factor, i.e., an average number of successors of any node, of b,
then the search space for finding a path of length d is on the order of O(b%). A
bidirectional algorithm, however, can reduce the size of search space to O(b%).
In our application, this translates into significant speedups as we will show in
Section 3.4.1 and Section 3.4.3.

The performance of bidirectional search strongly depends on two fac-

tors:

e The stopping criteria that determines when to stop the searches from

each direction.

e The merge query that efficiently evaluates potential merge points be-
tween the two searches.

32

If they are not properly designed, the search performance may be worse than
unidirectional A*. The core component of our bidirectional search algorithm
is a novel strategy to design these factors for motion synthesis. We address
the first issue by defining and dynamically adjusting a global cut, which deter-
mines where the search is stopped. To solve the second issue, we introduce an

efficient data structure that we call a merge hash table (MHT).

3.2.2 Dynamic Cut Adjustment

The search starts by alternately expanding two search trees from both
ends by maintaining two priority queues. We expand both trees until they
reach the cut. The idea is that the cut halves the search space so the work
required to expand both trees is well balanced. The search space is defined as
the collection of all possible solutions, and a solution is a sequence of search
nodes (N, ..., N;), where a search node N; is as defined in Equation 2.5 and
| is the length of the solution. Ideally, the cut is placed in a way that for any
solution of length I, no further expansion is made beyond N I The search depth

d is thus halved, and the search performance is improved from O(b%) to O(b%).
The midpoints of the solutions, however, cannot be determined in advance, so
we utilize the property of general motion synthesis problems to approximate
the cut in the state space S (the definition of a state can be found in Section 2.3).
Even with the state space, without sufficient information about how the search
will proceed, it is still difficult to place the cut properly at the beginning of the
search. Hence, we place an initial cut between the start and end states as a
hyperplane that splits the state space into two equal halves. Whenever a node
passes the cut, no further expansion can be made, since the other side will be
explored by the other search tree, as illustrated in Figure 3.1a

The performance of bidirectional A* largely depends on where the cut
is placed, since this determines how the search space is split. The initial cut,
estimated in the state space, may not divide the search space evenly, because
search depth is not directly proportional to distances in state space. For exam-
ple, some arcs in the search tree, such as the jumping motion, span a longer
distance in state space than others, such as a small step. Hence, one tree may

surpass the cut and terminate much earlier than the other. It is also possible

33

|
|
|
|
|
1
I
1
I
1
|
|
|

—
C |

1

(a) Bidirectional search and initial cut (c) First adjustment of cut

f/ ,@;\\‘,
L | <-4 @ @)ose
\\\‘v’ /, - -
(b) Merge hash tables (d) Second adjustment of cut

Figure 3.1: Bidirectional search: (a) We expand two search trees alternately
from the start and end states. The numbers in the nodes indicate the time
they are created. Cp indicates the initial cut, and we visualize the two halves
of state space in blue and green. Nodes in search queues are yellow. When
links cross the cut we insert the nodes on both sides (e.g. 5-7 and 8-10) into
the corresponding MHT. (b) When inserting a node into a MHT, we check its
neighboring states in the opposite MHT to find all possible matches. (c) The
left tree stops growing since all its frontier nodes either pass the cut (node 7)
or have costs exceeding the current minimal total cost (node 11). The fully
explored space is shaded in red. To keep both trees growing, we move the cut
to the right. We update the queues and MHTs accordingly, by putting nodes
across the new cut (nodes 2,4 in green) into the MHTs, and deleting nodes
beyond these pairs (nodes 6,8,10 in grey). Node 7 in the left tree is inserted
into the queue again. (d) Some time later, the right tree stops growing before
the left tree (all the frontiers pass Cj), so we move the cut to the left again,
splitting the unexplored space into two equal halves. Nodes 4,12 are then
inserted into search queue again.

that one search converges more quickly to the optimal solution than the other.
Unfortunately, after one tree’s termination the search behavior resembles uni-
directional A*, so we would like to keep both trees growing for as long as
possible.

We propose an algorithm to adjust the cut dynamically so that it even-

34

tually converges to the halfway cut in the search space. If one of the trees
terminates before the other, we move the cut toward the other tree so that it
splits the remaining, not yet fully explored space into two equal halves. This
procedure is iterated every time one tree stops growing (all the frontier nodes
either pass the cut or have costs exceeding the current minimal cost). We re-
peat this process until both trees terminate, or until there is not enough space
remaining to make the adjustment. Two iterations of dynamic cut adjustment

are illustrated in Figure 3.1c and Figure 3.1d.

3.2.3 Merging Two Search Trees

When a node passes the cut, we need to detect whether the current
path can be merged with any existing paths from the opposite search. We
say that two paths p; and p, are mergeable if they contain any pair of search
nodes N; and N, that are close enough in state space. More precisely, they are
mergeable if IN; € p1, Ny € pp such that a1 = ap, |x1 — x2| < €y, |21 — 22| < &,
and |01 — 02| < €y, where € = (ey, €5, ¢€9) is the tolerable deviation in (x,z,6)
between two states. Instead of evaluating all pairs of nodes for merging, which
takes linear-time computation, we would like to perform the query efficiently.

To achieve efficient merging, we maintain merge hash tables (MHT) indi-
vidually for each search tree. Each MHT records a set of candidate nodes for
merging from each side. The main idea is to quantize the state space into a
grid of cells, and to use the quantized state of each node to compute the key
for hashing. Pairs of nodes that can be merged will be guaranteed to fall into
neighboring cells. The hash table allows us to retrieve nodes in neighboring
cells in constant time while storing the grid efficiently. This approach is a vari-
ation of spatial hashing [16], which has been used in graphics for example for
collision detection [78, 45].

To quantize the state space we use a cell size of § x § x %. Note that
the pose index a is discrete by definition. For each node in the search tree, its
x, z, and 0 coordinates are discretized to the closest cell and used to compute
the hash key. When a node N passes the cut, we insert N and its parent N’ into
their own MHT (Figure 3.1a). Then we use their states X and X’ to query the
MHT of the other search tree (Figure 3.1b). For each query, we also check its
neighbors. That is, for a key X, we also use (a,x+ %,z+ %,0 & %9) to query

35

for matches. If a match is found between two nodes N; and Nj, the total cost
of the corresponding path is ¢(X7) + g(X2) + A|| X7 — Xz||, where A is a scaling
constant for the cost in merging two states.

During the entire search we always keep record of the path with minimal
cost. Similar to standard A* search, each tree will terminate growing if every
node in the queue has greater cost than the best solution so far, or if the queue
is empty (in this case, every path surpasses the cut). The search ends when
both trees terminate.

Every time we adjust the cut, we must update the MHTs along with the
search queues. To do the update efficiently, we maintain a Fibonacci heap for
each search tree respectively to order the nodes according to their distance to
the search root in state space. Given a cut, this allows us to extract all nodes
beyond the cut efficiently (the amortized running time is O(mlogn), where m
is the number of nodes beyond the cut, and 7 is the number of nodes in the
tree). More specifically, we update the search queues and MHTs as follows:
First, insert every pair of successive nodes crossing the new cut into the MHT;
second, mark all nodes beyond these pairs as obsolete; third, insert all the other
frontiers into the search queue if they are not already in it and if their costs are
smaller than the current minimal total cost. We illustrate the updated status

after cut adjustments in Figure 3.1c and Figure 3.1d.

3.3 Intuitive Motion Control with Strokes

The basic idea of our system is to allow the user to specify a motion by
sketching a desired trajectory for any controllable body part. Then we gen-
erate a motion whose trajectory of the specified body part best resembles the
input stroke under the current viewing perspective. Our system is intuitive
to use in that similar strokes may represent different motions under differ-
ent viewing perspectives (Figure 3.2a and b), and different stroke trajectories
can predictably generate different motions (Figure 3.2c and d) even with the
same start and end conditions. These features are infeasible with gesture-based
sketching systems [60, 79].

Searching a sequence of motion based on user sketches as described

above is an under-constrained problem. There may be more than one, or even

36

4
DY o AY { \ ﬁ.ﬁ}bé
FERTI S STV Y
(a) Jump (b) Detour
(c) Slap (d) Punch

Figure 3.2: Our system allows users to intuitively generate motions using a
simple stroke interface. Similar strokes under different situations can lead to
different motions.

many, motions that result in similar trajectories. Also, the user-input strokes
may jiggle, and stray away from a natural trajectory. Our system must be able
to handle these inputs robustly. To achieve this goal, we synthesize motion
by searching a path on the motion graph that minimizes the difference in tra-
jectories along with the energy required to perform the motion. We design a
cost function for the search to represent the user intention while being robust
to noisy input. Bidirectional A* search as described in Section 3.2 allows us
to compute a near-optimal motion sequence in seconds on a moderate-sized

motion graph.

3.3.1 Input Stroke Analysis

The input strokes convey the user’s intentions for a motion in several
ways. First, the shape of the stroke represents the desired motion trajectory

under the current viewing perspective. Second, the user can draw strokes at

37

(a) Input stroke (b) Distance function

Figure 3.3: Visualization of the distance function and chronological flow of
the input stroke: (a) A user input stroke and (b) its corresponding distance
function (brightness) and chronological flow (hue).

different speeds to control the speed of the final motion. At last, the intersection
of the stroke and the objects in the environment represents the character’s
contact with the environment. We next describe different cost functions that
capture these constraints.

The distance cost measures the deviation of the synthesized motion
from the trajectory specified by the input stroke. We use the technique pro-
posed by Hoff et al. [21] to generate a distance function to the input stroke. The
distance is measured in the image plane where the user draws the strokes. We
sample the input stroke uniformly in time, and for each pixel c on the image
plane we store its distance to the closest sample point. We denote the distance
function by D(c) : R? — R, which enables constant time look-up of distances.
Along with the distance, we also use T(c) : R? — R to keep track of the identity
of the closest sample point for each pixel on the image plane. T(c) provides
information about the sketching speed along with the chronological flow of the
stroke. Visualization of D(c) and T(c) is shown in Figure 3.3.

We compute the distance cost for each new node in the search tree that
we explore. To obtain a robust cost that is also efficient to compute, we evaluate
the distance to the stroke only at a few key frames [3]. Let us denote the state
of a parent node in the search tree by X’ and the state of one of its children by
X. To measure the distance error of X with respect to the stroke, we project the
controlled body part to the image plane at each key frame. We denote the 3D
positions at the key frames by (p1, p2, ..., pn) and their projected positions on

38

image the plane by (c1,ca,...,c,). Our distance cost is then

n—1

@00, X) = T (IIp— | x 2P, B

which penalizes large deviation of the projected trajectory from the input stroke,
weighted by the actual distance traveled in 3D. Since the stroke is defined on
the 2D plane, there might be more than one sequence of motions fulfilling the
constraint. We use ||p; — pi11]| to give preference to those having shorter paths
in the 3D environment, which are usually more intuitive.

The speed cost attempts to adjust the speed of the synthesized motion
to the speed of the user stroke. It also ensures that the character follows the
stroke in a chronological order. In the preprocessing stage we calculate and
store the moving speed along each link in the motion graph. The speed of a
motion is simply the distance between the character root at the beginning and
the end of the motion divided by the temporal length of the motion. At run
time, we compute the speed cost of the transition from state X’ to X as

_ max (|T(c) = T(")]5)

YXX) = ST = T@),s) - 52

where s is the pre-computed speed associated with the link in the motion
graph, and ¢ and ¢’ represent the projected position of the character’s con-
trolled body part on the image plane in state X and X’ respectively. Note that
we normalize the walking speed to a reference sketching speed to calibrate this
cost. To ensure correct chronological order, T(c) should be greater than T(c’)
if they belong to the forward search tree and vice versa in the backward search
tree.

The cost function also considers the smoothness of the transition be-
tween the poses a’ and 4, and the physical energy required to perform the in
between motion. We adopt the point cloud metric [31] with weights on differ-
ent joints [84] to compute the transition cost. The energy cost is the sum of the
squared torques via inverse dynamics [68]. There may be more than one se-
quence of motions fulfilling the input stroke, but the one with the least energy
usually looks more natural. Hence, the complete cost function is defined as

fX) = f(X) +70®(X, X") + ¥ (X, X') + vl (a,a’), (3.3)

39

/O——O X/
O/O - AXY)
Xf) e oy
: O—o0x

(a) Before merging

(b) After merging and warping

Figure 3.4: Merging the two partial solutions with motion warping. (a) A
possible solution of bidirectional search. The two mergeable nodes are colored
in purple. (b) We warp the whole sequence while fixing the start and end states
so that the final pose can fulfill the constraint more precisely.

where A(a,a") denotes the sum of transition and energy cost, and o, Ty, YA
are scaling constants.

Finally, we provide environmental constraints that allow users to gain
more control over the character motion. The users can specify contacts with the
environment by pausing a few seconds when drawing. We then use ray tracing
to find the intersection of the user stroke with objects in the environment.
From the intersections we obtain contact information, such as the position and
normal of the contact point, which serve as hard constraints in the search. This
allows users to guide the character to interact with the environment, e.g. pick

up, kick, or sit on an object.

3.3.2 Bidirectional A* Search

In this section, we provide more details about applying bidirectional A*
search with the stroke interface. Our objective is to find two mergeable state
sequences with minimal cost, (X{, Xg,) Xf m) and (Xb XZ Y

forward and backward searches respectively. X,J; and X! are mergeable states,

X%, from

as illustrated in Figure 3.4a. We extend the state definition from Equation 2.4 as

40

X = (a,x,z,0,t), where t indicates the chronological order of the current state
along the user stroke. We find the value of t by projecting the controlled body
part (pelvis for example) of the character onto the image plane and looking
up the identity of the closest sample point on the input stroke using the T
function.

The bidirectional search begins from the start state X{ and the end state
X! respectively. X{ is simply the character’s current state. On the other hand,
there may exist more than one candidate for the end state X!. In this case, we
create a virtual root node for the backward search tree and set all the candi-
dates as its children. The candidates are derived from the user input. We first
determine the end pose by intersecting the tail of the input stroke with objects
in the environment. If there is an intersection, we use the contact information
to extract all the possible final poses. Otherwise, we adopt all the resting poses
without environmental contacts. Secondly, we estimate the end position by
shooting a line from the current viewpoint to the tail of the stroke and match-
ing it with the controlled body part in the poses. Finally, we allow the user to
adjust the final orientation freely.

We define the cut by dividing state space. More specifically, we split
the space along the t axis only, since it provides enough indication for splitting
the search space. The initial cut is the hyperplane (t{ + t£) /2. Note that t{ is
the identity of the first sample point on the stroke (the minimal value of T(-)),
while # is that of the last (the maximal value of T(-)). During the dynamical
cut adjustment, we update the value of the cut as the median ¢ value in the
unexplored state space.

The mergeable states X& and X! in the result sequences may not match
exactly because the motion space is discrete and the environment is quantized.
If we simply concatenate the two sequences, the final state of the merged se-
quence will deviate from the user-specified state. Although the deviation is
within the error tolerance, the result motion will be unnatural in some cases.
For example in the case of grasping or kicking the character will act to the air.
Therefore, we include a warping step [87, 18] so that the final states match more
precisely. We illustrate the solution before and after warping in Figure 3.4a and
Figure 3.4b respectively. To avoid foot sliding due to warping we apply ana-
lytical IK at run time to plant the feet [80, 40]. Warping should be reduced to

41

X,
X] O/O /(/)O___O\O\O\O XY
d

X

Figure 3.5: Direct merging result of the two partial paths in Figure 3.4a found
with bidirectional search.

a minimum since it often degrades the motion quality. An advantage of near-
optimal solutions is that they require less warping than motions with higher
costs, which deviate further from user constraints. In Section 3.3.3, we show
that we can control the optimality of the final solution by adjusting the size of
quantization, e.

The heuristic function in our search is used to estimate the cost of getting
to the goal. Our heuristic function is a product of the shortest distance from
the current position to the goal, multiplied by the minimum cost function value
required to travel one unit distance. We run a number of tests to empirically
compute this minimum value from the motion graph data, as suggested in

Safonova and Hodgins’s work [68].

3.3.3 Optimality Analysis

In this section, we clarify that, due to discretization of the motion space
and quantization of the environment, the motions found by unidirectional
and bidirectional A* search may not be exactly the same, but the difference
is bounded.

Because of discretization, most solutions will not meet the goal exactly,
but it is important that the motion should fulfill the end constraint precisely.
Thus, to evaluate the cost of a solution, we warp its tail to the goal position.
This warping step will change the cost evaluated during the search frame-
work. The cost difference between the original and warped solutions, however,
is bounded above by a linear function, (¢, 1), where [is the length of solu-
tion, and ¢ is a threshold used to discard solutions with large deviation. The

reason why the bound depends on € and I can be visualized intuitively as the

42

difference of the shaded area in Figure 3.5 and Figure 3.4b.

Now to compare a unidirectional solution with a bidirectional solution,
we can split the unidirectional solution into two pieces and shift the second
half so that the end goal is reached exactly. The cost difference of the split is
also bounded by ¢. Let C, and C, denote the cost of the optimal solution in
unidirectional A* before and after splitting respectively, then C;, —c < C;, <
Cy + 0. The optimal solution in bidirectional A%, 1’7, is the optimal one over
all paths with two segments divided by the cut, then C{) < C, + 0. Thus, the
cost of the bidirectional solution C; is at most ¢ plus the cost of the optimal
unidirectional A* solution C,,.

To conclude, the difference between the warped solution from A* search
and that from bidirectional A* search is bounded by O(c). We can adjust
the tolerable threshold ¢ to control the difference. When ¢ is negligible, the

difference is unnoticeable.

3.4 Results

To produce our results, we construct a well-connected motion graph [93]
from input motions. During the construction, we interpolated the motions
in a close to physically correct way [67]. The resulting graph is larger than
a standard motion graph since it includes many interpolated poses that do
not belong to the original data to achieve better quality in the synthesized
motion. We compress the graph by retaining only the nodes where contact
changes happen!, and the links among them [68]. We first use the technique
from Lee and his colleagues [38] to identify contacts and then modify them
manually. There may be more than one path connecting each pair of contact
change nodes, and we use Dijkstra’s shortest path algorithm to compute and
retain the optimal one. The culling step does not affect the functionality of
the graph as long as users are not allowed to control the details of the motion

during a period of time when the contacts are not changing [68].

1A node is defined as a contact change node if its directly preceding node from the same
input motion sequence has different contacts with the environment, e.g. changing from left
foot stance to right foot stance.

43

MMHH%%S\ %}/WH M}

(a) Simple walk b) Jump and duck

;\\i

Q’*“}’M},M %
3) qn
MAL } &t

(c) Walk and pick (d) Long walk

Figure 3.6: Motion sequences obtained from our algorithm (without the final
warping step). The character is controlled at its pelvis (a), right hand (b), right
hand (c), and pelvis (d) respectively. In (d), the character jumps and lifts his
leg up high once because under this viewing perspective the input stroke only
provides constraint on the moving path, and these actions happen to fulfill the
trajectory better.

3.4.1 Performance

We generated a variety of examples on a Quad Core 2.4 GHz Intel pro-
cessor to show the effectiveness of our approach. We construct the motion
graph from a varied set of motion capture data, including walking with var-
ious turns, jumping, ducking, stepping over, cartwheeling, sitting, stepping
onto, kicking, slapping, punching, picking, and pitching. The total length of
original data is about 4 minutes long. The graph has 11436 nodes (including in-
terpolated and original nodes) and 15471 links. We compress the graph into 84
nodes and 827 links, by keeping only the nodes where contact changes happen
and links among them.

We set ¢, and ¢, to be about half of the length of a walking step, while
setting €y to 5.7 degrees. We compute the distance function and chronological

44

flow for each input stroke by rendering distance meshes on the GPU. The com-
putation takes less than 0.01 seconds, but the read back latency from GPU to
CPU is about 0.1 seconds.

We compare the search performance of standard A*, bidirectional A%,
and bidirectional A* with dynamic cut adjustment. In all the test cases pre-
sented in this section, we use the same graph, cost function, and heuristic
function. The synthesized results and performance comparisons are shown in
Figure 3.6 and Figure 3.7 respectively. Since the synthesized results of the three
approaches are indistinguishable, we only show those of bidirectional A* with
cut adjustment in Figure 3.6.

In the first test case (“simple walk”) the user draws a straight line in a
side view to guide the character to walk from left to right, as shown in Fig-
ure 3.6a. This case is simple and the two search trees are almost balanced, so
adjusting the cut provides no further speed up. The second test case (“jump
and duck”) is harder because the constraint is abstract and strays away from
the actual trajectory. A larger search space is required to better fulfill the con-
straints. Figure 3.7 shows that both versions of bidirectional A* outperform
standard A*. Bidirectional A* without dynamic cut adjustment, however, does
not fully utilize the advantage of search space splitting. Since the link of the
jumping motion is longer than average, the forward search tree terminates
much earlier, and dynamic cut adjustment can improve performance by mov-
ing the cut towards the other end. In the next test (“walk and pick”), shown
in Figure 3.6¢, the character is asked to detour in an S route to pick up a ball.
Both bidirectional versions outperform standard A* search by a large margin.
Our approach is more than seventy times faster than unidirectional search.
The main reason is that this case is more favorable to backward search, so
bidirectional A* with cut adjustment gains an advantage by moving the cut
toward the start state several times. In the last experiment (“long walk”) the
character is asked to walk a long way before making a 180-degree turn in the
end, as shown in Figure 3.6d. This example favors forward search a bit more
than backward search. Without cut adjustment, the forward search waits while
backward search expands ten times more nodes, so the performance is even
slightly worse than A*. With our cut adjustment the cut is moved backward

twice to balance the search, and we achieve interactive performance even for

45

A¥ Bidirectional A* Bidirectional A*+

Simple walk, 6 seconds

time 0.031s 0.016 s 0.016 s

#expanded nodes 3,175 78 + 65 78 + 65

speedup 1.00x 1.93x 1.93x
Jump & duck, 9 seconds

time 4781 s 325s 1.781 s

#expanded nodes 879,771 1,506 + 413,356 68,219 + 210,757

speedup 1.00x 1.47x 2.68x
Walk & pick, 19 seconds

time 14.188 s 0.375 s 0.187 s

#expanded nodes 2,841,462 37,238 + 9,918 10,122 + 9,918

speedup 1.00x 37.83x 75.87x
Long walk, 30 seconds

time 3255 3.344 s 0.875s

#expanded nodes 567,542 68,995 + 507,839 69,658 + 67,223

speedup 1.00x 0.97x 3.25x

Figure 3.7: Performance comparison between standard A* search (A*), bidi-
rectional A* search without cut adjustment (bidirectional A*), and our proposed
bidirectional A* search with cut adjustment (bidirectional A*+). With each ex-
ample we indicate the time it takes to execute the motion. We report the com-
putation times to find a near-optimal motion, the number of nodes expanded
in the forward and backward search trees, and the speedup.

this motion that takes 30 seconds to execute.

3.4.2 Control

We present a sketching system for intuitive motion control and editing,
with which even a novice user can specify a motion with simple strokes. The
user can adjust the viewing perspective and select a body part on the character
for sketching. Once a sketch is done, our system performs the bidirectional
search to provide immediate visualization feedback. If the user is not fully

satisfied with the result, the motion can be further refined with additional

46

Final motion

Figure 3.8: An editing session with our sketch interface. The user first edits the
trajectory of the character’s hand to pick up an object. The original trajectory is
marked in blue, and the user edit in green. Our bidirectional search algorithm
provides immediate feedback to visualize the edited motion. The user next
selects the character’s foot and edits its trajectory to step over an obstacle. Our
system synthesizes the final motion, shown in the bottom, satisfying all the
constraints in a near-optimal fashion.

strokes. An editing session is demonstrated in Figure 3.8. We also show in

Figure 3.9 that our synthesized motion can well match the input stroke.

3.4.3 Scalability

Our bidirectional strategy can be applied on many graph-like structures
to improve the performance of motion synthesis, e.g. state machines, motion
graphs, or even interpolated motion graphs [68]. Also, the bidirectional strat-
egy can be applied on other A* variants (truncated A*, inflated A*, or anytime
A¥), which would promise further performance improvement at the cost of
reduced quality of the solution.

47

Input stroke and synthesized motion First duck Second duck

Figure 3.9: The user specifies a motion by sketching the trajectory of the
character’s head. Note the depthes of the two concavities in the strokes are
different, and our system is able to match them with two different ducking
motion.

In this section, we show how the performance of different search algo-
rithms scales with the size of the graph. We ran experiments on an interpolated
motion graph created from a well-connected motion graph, which includes
walking with various turns and has 45 abstract nodes and 230 abstract links
(after compression). The interpolated graph has 1493 abstract nodes and 24882
abstract links.

First, we compare unidirectional and bidirectional search (with dynamic
cut adjustment) using a motion graph and an interpolated motion graph on the
same input. The synthesized motions and performance results are shown in
Figure 3.10 and Figure 3.11 respectively. With the interpolated motion graph,
the synthesized motion can fulfill the constraint more precisely, but the running
time increases accordingly. With depth reduction, however, our bidirectional
search suffers less from the increased graph size and achieves a speedup of
more than 10. We also implemented inflated A* by multiplying the estimated
cost with an error tolerance § > 1, so that the cost of the solution is bounded
from above by J times the cost of an optimal solution. From Figure 3.11, we
can see that even with § = 10, unidirectional search still requires 5 seconds,
which is 3.7 times slower than our bidirectional search with no inflation (6 = 1,
1.36 seconds). This shows that our algorithm is able to find a better solution in
a considerably shorter amount of time (the quality of the synthesized motions

can be compared in Figure 3.10).

48

Unidirectional Bidirectional+

MG TSNS N

5=1 ¢) [4
IMG

6=1

IMG

IMG

5=10

Figure 3.10: Synthesized results from unidirectional and bidirectional search.
The result motions are about 7 second long. The green line indicates the input
stroke, while the blue line represents the trajectory of the synthesized motion.

Secondly, we make the same comparison as above but with a longer
and more complicated input. The synthesized results and performance com-
parisons are shown in Figure 3.12 and Figure 3.13 respectively. In this case,
without inflation, both unidirectional and bidirectional search cannot find a
solution within two minutes, and more than ten million search nodes are ex-
panded. Setting § = 2, we are able to find a solution with bidirectional inflated
A*, but fail again with standard inflated A*. With standard inflated A*, we
need to set a much larger tolerance § = 10 to find a solution in a comparable
amount of time. Since the cost of the solution is only guaranteed to be bound
within 10 times the optimal cost, its quality is reduced significantly as shown
in Figure 3.12.

Although we demonstrated the bidirectional strategy only on basic A*

and inflated A*, we can apply it to other variants too. We would expect sim-

49

Unidirectional A* Bidirectional A*+

Motion Graph, § =1

time 0.297 s 0.078 s
#expanded nodes 47,821 4,786 + 6,310
speedup 1.0x 3.80x

Interpolated Motion Graph, § =1

time 14.171 s 1.36 s
#expanded nodes 2,450,768 78,278 + 83,434
speedup 1.0x 10.41x

Interpolated Motion Graph, § = 3

time 10.547 s 0.078 s
#expanded nodes 1,235,655 1,447 + 3,119
speedup 1.0x 135.21x

Interpolated Motion Graph, § = 10

time 5.094 s 0.063 s
#expanded nodes 625,766 1,554 + 1,274
speedup 1.0x 80.85x

Figure 3.11: Performance comparison between unidirectional and bidirectional
search. We applied both search algorithms on a motion graph and an interpo-

lated motion graph with the same input. We also made comparisons with both
standard A* (6 = 1) and inflated A* (6 > 1).

ilar results for example for anytime A*, which is a variant of inflated A* that
dynamically adjusts the optimality bound J at run time. We can also adopt the
approach of pre-expanding A* search trees [36] to further enhance the search

performance.

3.5 Conclusions

We present an algorithm to improve the search efficiency for near-optimal
motion synthesis using motion graphs, and demonstrated its application to in-
teractive motion synthesis using an intuitive sketching interface. The main idea

of our algorithm is to use a bidirectional search strategy. The benefit of this ap-

50

Unidirectional, 6 =10 Bidirectional+, 6 =2

Figure 3.12: Synthesized results from unidirectional and bidirectional inflated
A*. Note the deviation from the synthesized motion (blue line) to the input
(green line) in the right image due to large inflation. Bidirectional search pro-
duces a higher quality result (6 = 2) in a shorter amount of time (6.6 sec.) than
unidirectional search (6 = 10,10.18 sec).

search type time #expanded nodes
Unidirectional A*, § =2 > 2 minutes > 10 million
Bidirectional A*+, § = 2 6.60 seconds 354,641 + 459,431
Unidirectional A*, 6 = 10 10.18 seconds 2,385,957

Figure 3.13: Performance comparison between unidirectional and bidirectional
search with interpolated motion graph using a longer and more complicated
input.

proach is that it can reduce the maximum search depth by almost a factor of
two. We demonstrate that this leads to significant performance improvements.
To fully exploit the potential of bidirectional search, we propose to dynami-
cally adjust a cut that separates the two search trees, and we use efficient data
structures to limit the overhead required to merge them. We showed that in
some cases, the bidirectional search outperforms unidirectional search by an
order of magnitude.

We see the following limitations and opportunities for extensions that
we plan to address in future work: Although our approach is more efficient
than unidirectional search, the length of motions that we can generate at in-

teractive rates is still limited. This could be addressed with a hierarchical

51

approach. Another alternative is to use A* variants. Both approaches are or-
thogonal to the bidirectional search strategy and could be plugged into our
framework easily. A common issue in motion synthesis governed by a cost
function is to adjust the parameters of the cost to obtain intuitive results. This
often requires experimentation. It would be useful to have a more robust and
automatic way to determine appropriate parameters.

Moreover, although in this work we focus on the problem of motion syn-
thesis, the bidirectional framework has the potential of being applied on other
problems that can be solved with conventional search algorithms. The main
issue, however, is to find a mapping from the search space or state space to
the Euclidean space, since we define a cut and perform the cut adjustment di-
rectly in the Euclidean space. Once the mapping is obtained, our bidirectional
framework can be applied to speed up the search performance.

This chapter is based on “Bidirectional Search for Interactive Motion
Synthesis”, Wan-Yen Lo and Matthias Zwicker, Computer Graphics Forum (Pro-
ceedings of Eurographics EG'10), 2010.

o» Chapter 4 e

Reinforcement Learning

“To judge what one must do to obtain a good or avoid an evil, it is necessary to
consider not only the good and the evil in itself, but also the probability that it
happens or does not happen; and to view geometrically the proportion that all
of these things have together."

Port-Royal Logic
ANTOINE ARNAULD

The problem of interactive motion control by assembling motion frag-
ments is similar to sequential decision problems in Al. In a sequential decision
problem, an agent needs to make a sequence of decisions to maximize the
total reward, while in an interactive application of motion control, the pro-
gram needs to compose a sequence of motion fragments that best fulfils user
control and environment constrains. In this chapter, we describe how the opti-
mal behavior can be learned in a pre-process, so that optimal or near-optimal
decisions can be made instantaneously in real-time. Such guarantee on both
real-time performance and (near) optimality is hard to achieve with the search
strategies described in Chapter 2 and Chapter 3. We first explain in Section 4.1
how to formulate the sequential decision problems using Markov decision pro-
cesses and how to solve the problems to produce optimal behavior. We next
introduces reinforcement learning in Section 4.2, which does not require a com-
plete model of the environment, but instead lets the agent interact with the
environment and uses the observed rewards to learn an optimal policy. Hence,
reinforcement learning allows us to specify only the high level goals of the
problem, e.g. move to the destination or win the game, without explicitly de-

scribing the possible outcomes of each action. Finally, in Section 4.3 we provide

52

53

details of building a motion controller with reinforcement learning and review

relevant work in character animation.

4,1 Markov Decision Process

A Markov decision process (MDP) is used to specify sequential decision
problems, and is defined as (S, A, T, R), where

e S is the state space.
e A is the action space.

e T is the transition model, where T(s,a,s’) denotes the probability of
reaching state s’ if action a is taken in state s. The transitions are Marko-
vian, meaning the probability of reaching s’ from s depends only on s and
not on the history of earlier states. If the probability is either 0 or 1 in the
transition model, the MDP is deterministic, that is, taking action a in state
s always leads to the same state s’. On the contrary, if any state-action

pair may lead to more than one possible state, the MDP is stochastic.

e R is the reward function, and R(s,a,s’) returns the reward of taking ac-
tion a in state s and moving to state s’. The reward can be positive or
negative, but must be bounded. The definition of the reward function
can also be simplified as R(s) to only depend on the current state s. This

simplification does not change the problem in any fundamental way.

Let us take the navigation problem as an example to show how it can be mod-
eled with MDP. Suppose the agent is situated in the environment shown in
Figure 4.1a, and in each time step, the agent can move in one of the four di-
rections shown in Figure 4.1b. The state space consists of all possible locations
in the environment, and the action space consists four movements. To simplify
the problem, we assume each action always achieves the intended effect, except
that colliding with a wall results in no movement. In addition, the agent stops
moving after reaching one of the two target states. Therefore, T(s,a, s/) returns
one only when s is not a target state and one of the following conditions holds:

1. s’ # s and ¢’ is in the direction a of s.

54

I Y Z / 7 ypy, / 7
Z /
alala|l@®@] J3lels|R) I=|=>|=|Q
+6 7 ’
12 |3 5 11| ¢ t
-1 -1 / A1 g ’
Z 1 (2 |3 | 4 1t |t |= |1
7 /
1 1 1 1 10 2 | 9 1t - |9
7 Z 7 7 777
1 @ y=1 y=1
+3 5 7 /) 7 7
7 7 7 7 7 Z/ 7 7 7 / 7 7 7
A4]o © A= |=> | =
. Z +6 +6
(a) Environment s 4) YR N
4 /
1169|138 |-0.75| 0.5 A=>|=>|=| ¥
Z 7
Y
g -1.85 0.5 9 f =) ?3)
f ‘ » « 7 77 T A A 77,
vy=05 vy=05
(b) Actions (c) Optimal value (d) Optimal policy
function

Figure 4.1: A simple navigation problem. The state of an agent is its position
in the environment (a), and the agent can move in four different directions
(b). The two target states have reward +6 and +3 respectively, and all other
states have a reward of -1. A collision with a wall results in no movement.
Two different discount factors are used to learn the optimal value functions
(c) and optimal policies (d). A small discount factor results in a near-sighted
behavior, with which the agent does not plan far about the future and always
move toward the closer target even though the reward is smaller.

2. s’ = s and there is a wall in the direction a of s.

The MDP is thus deterministic. The reward function is used to specify the
agent’s behavior. In this example, we would like the agent to go to the top-
right corner g; or the bottom-right corner g, but with stronger preference on
the top-right corner. The rewards are then set as R(g1) > R(g2) > 0. Also,
R(s) = —1 for all other states, giving the agent an incentive to reach the targets
quickly.

A solution to the problem modeled with MDP is called a policy, denoted
by 7t. A policy is a deterministic mapping from the states to the actions, and
given a policy m : S — A, the agent will always take action 7t(s) in state
s. The total number of all possible policies is thus |.4|!, assuming the state

55

S a,=n(s,) oS a,=n(s,) oS
R(s,) R(s,) R(s,)

Figure 4.2: At each discrete time ¢, the agent is in state s;, and by taking action
a; = 71(st), the agent reaches state s;;1 with reward R(s¢11).

and action space are discrete. In a discrete-time system, the agent takes action
7t(s¢) at time ¢ and reaches state s;, 1 receiving reward R(s;; 1) !, as illustrated
in Figure 4.2. The quality of a policy 7 is measured with the accumulated

rewards in the long term,

(ee]

R(s0) + 7R(s1) + 7v*R(s2) + ... = §7tR(5t)r

where v € [0,1) is a discount factor, which accounts for future uncertainty and
gives more weight to the near future than the distant future. This factor can
be used to specify how far into future the agent should plan for. If v = 0,
only immediate reward matters, and the agent will act in a greedy fashion. If
v < 1, the agent will be near-sighted, otherwise if 1 — ¢ < 1, the agent will be
far-sighted. Figure 4.1d compares the effects of two different discount factors:
when the distant future is as important as the near future, the agent will risk
short-term benefits to achieve bigger objectives in the long run; as the distant
future is weighted less, the agent becomes more opportunistic, and will aim
for closer rewards.

If the MDP is stochastic, executing a policy from the same initial state
will lead to different state sequences. Hence, to evaluate the quality of a pol-
icy, we need to take into account the stochastic nature of the environment by
computing the expected accumulated long-term rewards in the long term. The
value function V' : § — R is thus defined as,

t=0
= R(s) + fyZ T (s, 7t(s),s") V7'(s'), (4.2)

V7(s) = E™ [i ’th(st)‘so = s] (4.1)

IThe complete definition of the reward function, R(s¢, a¢,s+1), depends also on the action
and outcome. Here we use the simplified definition, so that the reward only depends on the
current state.

56

which returns the expected long-term reward from an initial state s following
the policy 7t. Equation 4.2 is called the Bellman equation [6], stating the recursion
relation of the value function. It can be proved that there is always at least one
optimal policy 7t* that yields the optimal value V* for every state [77], that is,
V*(s) > V7(s) for all policy 7 and state s. Although there may exist more than
one optimal policies, there is only one optimal value function V*, which is the

unique solution to the Bellman optimality equation,

V*(s) = R(s) + 'ymngT(s, a,s"\V*(s'), (4.3)

named after Richard Bellman [6].

A similar notation to the value function is the action-value function Q™ :
S x A — R, which returns the expected long-term reward from an initial state
s taking action a and then following the policy 7,

QTE(S,LI) = ET([i ’)/tR(St)‘SO =5,40 = a] (44)

=0
=R(s)+v)_T(s,a,8)V(s). (4.5)

The optimal action-value function is denoted by Q*. An optimal policy can
be obtained with the optimal action-value function or with the optimal value
function,

¥ (s) = argmax Q™ (s, a) (4.6)

a

a

= argmax |R(s) +) _T(s,a,s")V*(s')
S/

(4.7)

= argmax |)_T(s,a,s')V*(s')

a s/

Example optimal value functions along with the optimal policies are shown
respectively in Figure 4.1c and Figure 4.1d. Next, we describe two algorithms

for finding optimal policies.

4.1.1 Policy Iteration

To find the optimal policy, the policy iteration algorithm initializes a pol-
icy mp at random, and then alternates the following two steps to improve the

policy until convergence:

57

e Policy evaluation: Given a policy 7;, calculate the value function Vi for

every possible state.

e Policy improvement: Use V' to calculate the new policy 7,11, which

performs better or equal to the old policy 7;.

The algorithm terminates when the policy improvement step yields no more
change in the value function.
We first describe how to implement the policy evaluation step. Given a

policy 7r, we can re-arrange Equation 4.2,

'yZT s,7(s),s") V'(s') = R(s),Vs € S, (4.8)

where V7 (s) is the only unknown, and by factoring out V7 (s), we can form a

system of |S| linear equations with |S| unknowns:

[lisjis) —T| v =1, (49)

where [is an identity matrix, T is a transition matrix built from the transition
model, v is an unknown vector of the value function, and r is a vector of the

rewards. Hence, the value function can be solved as,

-1
v= [I‘S‘X‘S‘ - ’yT} r. (4.10)

The time complexity of this exact solution method is O(|S|?), dominated by
the matrix inversion. For small state spaces, this is often the most efficient
approach to evaluate the value function, but for large state spaces, O(|S|?)
computing time might be prohibitive. Therefore, in the case of large state
spaces, an alternative is preferred, which iteratively performs the following
update,

V7(s) < R(s —I—’yZT(sn s),s") VT(s'). (4.11)

This is a simplified version of value iteration (Section 4.1.2) and provides a
reasonable approximate of the value function.
Secondly, the policy improvement step is implemented by defining the
new policy as,
miy1(s) = argmax Q™ (s, a). (4.12)
a

58

We can then derive the following inequality,

V() = QT (s, mi(s)) < maxQ(s,a) = QT (s, i (s), (413)

which can be expanded with Equation 4.5 as,
V7i(s) < Q% (s, 7mi11(s)) = R(s) + v YT (s, miva(s),s") VTi(s). (4.14)
S/

Hence, it is better to take the first step under 7;;; than to always follow ;.

The inequality can be expanded one time step further as,

V() < R(S)+7 LT (5w (s),8') |[R(S) + 7 LT (5, mipa(s1),s") V(")
7 o7

We can conclude again that it is better to take the first two steps under ;4
than to always follow 7;. Similarly, if we expand the inequality ¢ time steps,
we can conclude that it is better to take the first ¢ steps under ;1 than to
always follow ;. Let t — oo, it is better to always follow 77;;1 than ;. As a
consequence, 77;11 is proved to be better or equally good as ;.

Since there are only finitely many policies for finite state and action
spaces, the policy cannot be infinitely improved. At some point, the policy
from the previous iteration 7r; must be as good as the new one ;1. This

happens when the equality in Equation 4.13 holds,
V7i(s) = max Q”i(s,a),

a
which can be further expanded with Equation 4.5,

V7i(s) = R(s) + 'ymaaxZ/T (s,a,8") VTi(s').

Satisfying the Bellman optimality equation (Equation 4.3), V' is thus optimal.
We can then conclude that the algorithm must terminate and 7t; will converge
to the optimal policy 7*.

4.1.2 Value Iteration

In the previous section, we show how policy iteration iteratively im-

proves an initial policy until it converges to an optimal policy. One drawback of

59

policy iteration, however, is that each iteration of the algorithm involves policy
evaluation, which itself may also be computed iteratively (see Equation 4.11).
In this section, we describe an alternative, value iteration, which directly com-
pute the optimal value function with an interactive algorithm, and in the end
uses the optimal value function to define the optimal policy with Equation 4.7.

The optimal value function is the solution to the Bellman optimality
equation (Equation 4.3). However, unlike the Bellman equation (Equation 4.2),
which defines a system of linear equations and can be solved directly with lin-
ear algebra techniques (Equation 4.9), the Bellman optimality equation defines
a system of nonlinear equations. Value iteration provides an iterative approach
to solve the problem. The algorithm starts by initializing a value function Vj to
be zero everywhere and iteratively update the value function until equilibrium.
The iterative step is called Bellman update,

Viii(s) « R(s) + 'ymfoT(s, a,s"\Vi(s'),Vs € S, (4.15)
S/

which use the right-hand side of the Bellman optimality equation to update
the value function.

If the Bellman update is applied infinitely often, V; is guaranteed to
converge to the solution of the Bellman equation, that is, the optimal value

function. Let A; denote the approximation error at the ith iteration,

A; = max |Vy(s) = V*(s)], (4.16)
then with the Bellman update we have
Aip1 = max| Vi (s) — V*(S)‘

= max|R(s) + ymax Y T(s,a,8') Vi(s') — V*(s)‘
a S

— / (!N _ / * (o]
—maxR(s)-i—’ymfxsZ/T(s,a,s)Vz(s) R(s) 'ymfxsZ/T(s,a,s)V (s

— / (!N / *
—’ymgx‘mfoZ,T(s,a,s)Vl(s) mfoZ/T(s,a,s)V (s"

With the follwing lemma,

| max f(a) — maxg(a)| < max|(a) — g(a)], (4.17)

60

we further obtain the inequality

Ai+1 < ymaxmax
S a

Y T(s,a,s") (Vi(s') — V*(S/))‘

S/

Vi(s") = V(')

< ymax
S/

= ’YAZ'/
which implies
A; < A (4.18)

Suppose the reward function is bounded by B,, that is, maxs |R(s)| < By, Ag is
bounded by

B
_ * * 2 r
Ao—msaxWO(s) V (s)]—msgx\v (s)| < B, <1+'y+'y —i—) 1

Finally, we derive the error bound of the approximated value function at the

ith iteration,

1 — 1 . r),
proving the convergence property of the value iteration algorithm, since A; — 0

) (4.19)

when i — co. The convergence rate of the value iteration algorithm depends
on the discount factor v, and more iterations are requires when the value of vy
increases. In addition, with large MDP or limited computing resources, a near-
optimal policy may be preferred, and we can use Equation 4.19 to compute
the minimal number of iterations required to reach an error bound on the sub-
optimality.

4.2 Reinforcement Learning

In Section 4.1, we have seen how a sequential decision problem could
be formulated with a MDP, and how an optimal policy could be solved with
the policy iteration or value iteration algorithm. However, in many complex
domains, it is difficult a obtain a prior knowledge of the complete transition
model and the reward function. For example, when training an agent to nav-
igate a complex environment with a large set of rules, it is hard to enumerate

all the possible outcomes of taking any action in any situation. In this chapter,

61

7 7. G ‘ 7 7. yuz ’-/6 Learnl ng
1@ ;
7R
— — >
Observe . Observe again and Learn from
. Take action . .)
environment receive reinforcement observation

-— -
-— ——
_—— -

Figure 4.3: Reinforcement learning allows an agent to learn from interacting
with the environment. By taking an action, the agent observes the change of its
states in the environment and receives back a reinforcement, which could be
rewards or penalties. The agent can explore the environment constantly and
use the observations all at once to learn an optimal behavior, or the agent can
alternate between learning and exploration, so that the learned policy can be
used to make better exploration.

we describe how the problems could be solved when the transition model and
the reward function are unknown. This learning framework allows the training
to be performed at high levels. It works by placing the agent in the environ-
ment and observing the agent’s interactions with the environment. The agent
is never taught how to behave but is only informed when the task is fulfilled
or when a rule is broken.

Reinforcement learning (RL) is biologically inspired and use observed re-
wards or penalties to learn an optimal or near-optimal policy for the envi-
ronment [27, 77]. Unlike supervised learning, RL requires no explicit teacher
to tell the agent what action to take in each circumstance. Instead, the agent
receives reinforcement signals while interacting with the environment. The re-
inforcement can be either positive or negative so that the agent learns the good
or bad consequence of taking a specific action in a specific situation. Such re-
inforcements can also be delayed from the actions which are responsible for
them, allowing an agent to learn long-term consequences. Similarly, from a bi-

ological perspective, when an animal bumps into a wall, it receives a sensation

62

of pain as a negative reinforcement and will eventually learn to keep a distance
away from the wall.

The reinforcement learning framework consists of two step: gathering
observations from the environment and learning from the observations. We
can either gather all the required observations at once for learning a control
policy, or iterate between the two steps so that in each iteration the updated
policy is used to gather more informative observations, as shown in Figure 4.3.
There are two types of learning algorithms: model-based and the model-free
approaches. The model-based algorithms use the observations to explicitly
build a MDP model and learn an optimal policy with the MDP (using the
value iteration or policy iteration algorithms for example). On the contrary,
the model-free approaches learn the value function or action-value function
directly without building any MDP model. We will first describe how to gather
observations from the environment in Section 4.2.1, and introduce a model-
based and a model-free learning algorithm in Section 4.2.2 and Section 4.2.3

respectively.

4.2.1 Exploration

To compensate the absence of an explicitly defined transition model and
reward function, reinforcement learning algorithms require the agent to ex-
plore the environment extensively so that sufficient information can be gath-
ered to learn an optimal policy. Two strategies are commonly used for the agent
to explore the environment: random exploration and greedy exploration. With the
tirst strategy, the agent explore the environments with random actions, and the
algorithms will eventually converge if every action is taken an infinite num-
ber of times in every state. The performance, however, can be extremely poor.
In order to put the gained knowledge in use to make less exploration neces-
sary, the second strategy requires the agent to follow the recommendation of
the currently learned policy. By greedily taking actions with the current pol-
icy, however, the agent risks getting stuck with the same (suboptimal) action
when entering the same state. The agent might just linger around the small
rewards discovered, even though bigger rewards exist in the undiscovered re-
gion. Hence, although greedy exploration can lead to shorter learning time, the

learning algorithms are not ensured to get sufficient information to converge

63

to an optimal solution.

This is a fundamental trade-off in reinforcement learning, between ex-
ploitation of learned behaviors with high reward and exploration in undiscovered
region of state-action space. An compromise approach is e-greedy exploration,
where the agent chooses a random action with probability € and follow the
currently learned policy with probability 1 — . Ernst et al. [14] show that with
limited observations, learning with the e-greedy exploration results in a better
policy than learning with the random exploration, especially in the problems
where the goal is hard to reach by simply taking random actions. The e-greedy
exploration method is also used in our work (Chapter 5 and Chapter 6).

Russell and Norvig [66] suggest another exploration strategy, which
gives some weights to actions that the agent has not tried very often, while
tending to avoid actions that are believed to be of low value. This is imple-
mented on top of the greedy exploration by assigning to relatively unexplored
state-action pairs an optimistic value estimate of the best possible reward ob-
tainable in any state. Such value estimate has the effect of making the agent
behave initially in an very optimistic way, as if there are rewards scattered all
over the place. On the contrary, with pessimistic value estimate, the agent
would soon disinclined to go beyond the explored regions. Finally, they show
that this exploration strategy leads to a rapid convergence toward optimal per-

formance.

4.2.2 Model-based Learning

The model-based reinforcement learning algorithms work by reconstruct-
ing the MDP explicitly and solving the reconstructed MDP with a dynamic
programming method (e.g. value iteration, policy iteration). In this section, we
introduce a simple model-based learning algorithm.

In order to reconstruct the MDP model from the observations, we can
keep track of the outcome and frequency of every transition for estimating the
reward function and the transition model. More specifically, after each step
of the exploration, we observe a transition, (s,a,s’,r), which means by taking

action a in state s the agent enter state s’ with reward r, and we use the new

64

observation to update the MDP:

N(s,a) < N(s,a)+1

N(s,a,s") < N(s,a,s') +1
R(s") «
T(s,a,t) «

r

N(s,a,t)/N(s,a),Vt € S.

N(s,a) represents the number of times the action a has been taken when the
agent is in state s; similarly, N(s, a,s’) represents the transition frequency. With
these update rules, the estimate of the MDP will converge to the right one
eventually if each action is taken an infinite number of times in each state.
Each time the MDP is updated, it can be solved with a dynamic pro-
gramming method to get a new policy, which can be used by the agent to
turther explore the environment. Solving for a new policy after each update,
however, can lead to high computational overhead, since the MDP needs to be
solved completely even if it is modified only slightly. In addition, this model-
based approach requires non-linear memory usage to keep track the transition
frequencies, which is intractable for large state spaces. Backgammon, for exam-

ple, has about 10%

states. Nevertheless, model-based learning algorithms have
an advantage that the reconstructed MDP is useful for task transfer where the
reward function or discounted factor changes but system dynamics remains

the same, e.g. robot navigation with different goals in the same environment.

4.2.3 Model-free Learning

Contrary to the model-based approaches, model-free learning algorithms
compute an optimal policy directly without reconstructing the transition model
and the reward function. In this section, we introduce a representative model-
free learning algorithm, Q-learning, which uses the observations to incremen-
tally update the action-value function. Before describing the Q-learning algo-
rithm, we first explain how to evaluate an existing policy without knowing the

corresponding MDP.

Temporal difference. Given a policy 7, the temporal difference (TD) algorithm

allows us to directly compute V™ without explicitly reconstructing the MDP.

65

The algorithm requires the agent to explore the environment with policy 7r and
uses the observations to incrementally update the values of the observed states.
More specifically, for each observed transition (s, a, s',r), the following update
is applied,

V7 (s) < V(s) + ad(s), (4.20)

where « denotes the learning rate, and (s) represents the temporal difference
between a new value estimate from the observed transition, » + yV7(s’), and

the current value estimate V7 (s):
5(s) =r+V7(s') — V7 (s).

The temporal difference indicates whether the current estimate should be in-
creased or decreased in order to move toward the equilibrium of the Bellman
equation (Equation 4.2). In general, TD learning is a combination of Monte
Carlo ideas and dynamic programming ideas [77]. TD is related to dynamic
programming techniques because the value function is updated with the pre-
viously learned estimate. TD is related to Monte Carlo sampling because it
estimates the value function stochastically by sampling the environment with
the fixed policy 7.

Assume each state is visited infinitely often under policy 77, then the TD

learning will converge if the following conditions hold:

e Each state has its own learning rate «;(s), where i denotes the ith visit to
the state s.

e The learning rate « satisfies }5°; a;(s) = oo and Y32 a?(s) < oo for all
states € S.

Intuitively speaking, the learning rate a; should decay sufficiently slowly with
respect to i to incorporate a large number of observed transitions, but «; should

also decay sufficiently fast to allow convergence.

Q-learning. Similarly, the Q-learning algorithm [85] learn the optimal action-
value function Q¥, by incrementally updating the Q-function with the temporal

difference between the new observation and the current estimate. The agent

66

is not required to follow any particular policy but can use any exploration

strategy. The following update rule is applied when a new observation is made:

Q(s,a) + Q(s,a) +«a [r +ymaxQ(s’,a’) — Q(S,El)} : (4.21)

If each state-action pair is visited infinitely, and a decaying «;(s,a) is used for

each state-action pair, the algorithm converges to the equilibrium of
Q(s,a) = R(s) + 7Y [T(s, a,s) (max Q(s',a’))} , (4.22)
s/ a

which can be obtained by applying Equation 4.5 on an optimal policy. If an
action-value function satisfies Equation 4.22, it is optimal. Once the optimal

action-value function is learned, Equation 4.6 is used to derive an optimal pol-
icy.

4.3 Learning Motion Controllers

In this section, we describe a reinforcement learning framework to ob-
tain optimal or near-optimal motion controllers for interactive character anima-
tion. Given a corpus of motion fragments, the motion controller is responsible
for making a sequence of decisions to generate a motion that achieves user
goals. The controller makes decisions in real-time, and only decides the next
motion fragment when the currently played fragment completes. Making a
good decision is important, as some user objectives require planning ahead of
time. For example, if the character is required to leap over a long gap, the con-
troller should prepare the character to run several steps ahead. Otherwise, if
the decision is made too late, a sudden transition from ‘walk’ to ‘jump’ might
appear too abrupt, or there might even exist no transition from ‘walk” to jump’
(only from ‘run’ to ‘jump’), and in this case the motion fails to satisfy the con-
straint. Each decision, however, can only be made within a short amount of
time, since time lags are not allowed in interactive applications.

Reinforcement learning is a promising approach to address these issues.
With reinforcement learning, the controller can be constructed in a pre-process
by exploring and learning from all possible situations. The learned controller

can make optimal or near-optimal decisions in real-time, reacting to user input

67

or changes in the environment. Furthermore, reinforcement learning allows
formulating only high level goals, such as obstacle avoidance or grasping ob-
jects at specific locations. Control policies can be generated automatically to
achieve these goals, and there is no need to specify which states are more
preferable in which situations.

The rest of this section is organized as follows. Section 4.3.1 describes
how the problem of motion planning can be framed in the context of reinforce-
ment learning, and Section 4.3.2 reviews different strategies to learn motion
controllers. Section 4.3.3 summarizes the advantage and disadvantage of the

reviewed controllers and concludes this chapter.

4.3.1 Problem Formulation

In general, the motion control problem can be modeled as a determinis-

tic MDP with discrete-time dynamics:

e The action space A is defined as the collection of motion fragments. Some
systems split the motions in the database into short clips in a pre-process
and allow transitions between any two clips. In this scenario, an ele-
ment a € A denotes a specific motion clip. Alternatively, some systems
build a motion graph directly from the motion capture database to encode
smooth transitions among the motions (see Chapter 2). In the second sce-

nario, an element a € A represents a graph link in the motion graph.

e The state space S is composed of all possible configurations of the current
character motion, the environment, and user input. The parameterization
of state space is application specific, but in general a state s; € S is a vec-
tor (a;_1, x}, ..., x}), where t is a discrete time step, a;_1 € A denotes the
previously played motion fragment, and x/,...,x! € R" are parameters
describing the character’s current situation in the environment, such as

the relative position to the goal, or deviation from desired orientation.

e The transition model is deterministic and defined with the transition func-
tion, f, which describes how a state is updated when a certain action is

executed:

f(se,ar) =81 = (at,x}H,...,xt”H). (4.23)

68

a,=m(s,) a,=m(s)

R(s,, a) R(s,, a)

Figure 4.4: An MDP specifying the problem of motion planning: At each
discrete time f, the agent is in state s;, and by taking action a; = 7(s;), the
agent reaches state s;1, receving reward R(s¢, a;).

At time t, when action a; is selected, the corresponding motion is con-
catenated with the previous motion, a;_1, and the state s;; is updated

with the character’s new situation in the environment.

e The reward function R is defined as,
R(st,a;r) = Rs(s¢) + Re(ap_1,a¢), (4.24)

where R; denotes the state reward and R; denotes the transition cost. The
state reward measures how well the character respects user objectives
and environmental constraints, while the transition cost is used to ensure
smooth motion transition between different motion fragments. The state
reward is application specific and usually designed manually, while the
transition cost is usually computed in a similar way as what we described
in Section 2.2.

The system dynamics is illustrated in Figure 4.4.

Care must be taken when designing the state space: on one hand, the
state definition should be descriptive enough so that the transitions are Marko-
vian (the next state can be derived solely from the current state and action); on
the other hand, the state definition should be as concise as possible to avoid
the Bellman curse of dimensionality. Hence, it usually relies on the designer’s
comprehensive understanding of the problem to define a proper state space
with least possible parameters. The previously played action 4;_; is included
in the state space for a similar purpose of making the transitions Markovian,

and also for incorporating a transition penalty into the reward function.

69

4.3.2 Continuous State Space

When the state and action spaces are discrete and small enough, the
value function V* (or action-value function Q*) can be tabulated during learn-
ing, and the derivation of the control policy from the value function (or action-
value function) is straightforward. However, when dealing with motion plan-
ning, the state space is usually continuous and large, so the motion controller
cannot be learned directly with the conventional methods introduced in Sec-
tion 4.1 and Section 4.2. In this section, we review some previous work in
computer animation that learn motion controllers with reinforcement learning,
and discuss how they handle the continuous state space.

Among all techniques, discretization of the state space may be the most
straightforward way to simplify the problem. Lee and Lee [39] use reinforce-
ment learning to create a controllable and responsive avatar for boxing, and a
state is defined to be the opponent’s relative position in 3D space. They dis-
cretize the state space to form a grid of locations, and apply value iteration
(Section 4.1.2) to learn the value function V* on the grid. In run time, when-
ever the avatar is provided with more than one available action, the motion
controller selects the one that makes transition to the state with the highest
value (Equation 4.7). Since a state s may not coincide with a grid point, they
approximate its value, V*(s), by linearly interpolating values at adjacent grid
points. Similarly, Lee et al. [44] choose state samples by taking the Cartesian
product of the database motion states and a uniform grid sampling of the task
parameters. They apply value iteration to learn the value function and also use
interpolation to estimate the values at non-sampled points.

McCann and Pollard [50] use reinforcement learning to create a mo-
tion controller that can generate high quality motion but also rapidly adapt
to changes in player input. In their work, a state is defined as sy = (a;—1,¢t),
where a;_1 € A refers to the previouly played motion fragment, and c; denotes
the current control signal from a player’s input device. The control signals
originally exist in a continuous space, and they deal with this problem by dis-
cretizing the signals into several bins. Each control signal is then treated as
the center of its corresponding bin. Since the control signals generally will
not come in a deterministic order, they model the problem with a stochastic

MDP, and estimate the transition model by collecting example input streams.

70

Hence, T (st at,51+1) = P(ct41]/ct) returns the probability that the next control
signal will be in bin ¢, given the previous control signal is in bin ¢;. This
is also a rough model of player behavior. The reward function is defined as
R(st,at) = Ry(az_1,at) + Rs(ct, ar), where R¢(a;_1,a;) indicates smoothness and
realism of the transition between two fragments, and Rs(ct, ;) indicates how
closely fragment a; matches the control signal c;. In the end, they apply value
iteration to learn the value function V*, and derive the optimal policy from the
value function. Similarly, Lee et al. [42] and Levine et at. [46] approximate the
value function by binning the state space and by applying the value iteration
algorithm.

Ikemoto et al. [22] present a RL framework for controlling autonomous
agents in a hostile world. Their state representation encapsulates information
about the obstacles and enemies around the agent. They discretize the contin-
uous state space by placing bins locally in the nearby space around the agent.
If the center of a bin falls within an object, the bin is marked as occupied. In
addition, they represent the value function in a parametric form. A general

parametric value function can be written as:
V(s) = 01b1(s) + 02b2(s) + ... + Onbu(s), (4.25)

where by, ..., b, are features (or basis functions) and 6, ..., 0, are parameters
for weighting the features. In their work, the features in the parametric value
function include the distance to the goal and kernel functions that isolate the
effect of each bin surrounding the agent. They sample a few states in the state
space and learn a set of parameters, (9;, ...,05), for each sampled state s. To
do this, they generate 3000 random parameter sets for each sampled state, run
simulation in the environment using different sets of parameters, and keep the
parameters that generate the highest reward for the sampled state. Given a new
state, its control parameters can thus be interpolated using the neighboring
sampled states.

Treuille et al. [81] use the parametric representation of the value function
in a more general way to avoid any discretization of the state space. They define
the basis function, (b, ..., by,), as polynomials or Gaussians, and adapt a linear
programming approach for solving a global set of parameters, (64, ...,60,). The
algorithm starts with a set of state samples S C S, and an empty set of tran-
sition £ € S x A x S, and alternates between the following two steps until

71

convergence:

e For each state in S, use the current value function to build a transition

and insert it into L.

e Update the value function by solving the linear program:

s.t.V(st) < R(st,ar) + vV (sia1),V(st, at,s141) € L.

The second step essentially inflates the value function as much as possible sub-
ject to the bounds given by the Bellman equation. With a continuous value
function representation, their controller can produce motions that fluidly re-
spond to user control and environment constraints in real-time. This approach,
however, relies on the assumption that the desired value function can be ap-
proximated using only a few basis functions. The learning algorithm becomes
very inefficient for larger number of basis functions, because it requires the
solution of a linear programming problem in each iteration. In addition, prior
knowledge of the optimal value function is required to select a good set of
basis functions to fit the manifold, otherwise the algorithm may not converge.
Wampler et al. [82] extend this approach by applying truncated PCA to reduce
the number of basis functions, and they define the basis functions as the bases
of a third-degree B-spline. The predefined set of basis functions, however, is not
able to approximate any arbitrarily-shaped value function, and expert knowl-

edge of the domain is required to choose the appropriate basis functions.

4.3.3 Summary

To sum up, each of the methods discussed in Section 4.3.2 can be per-
ceived as fitting a function approximator to the value function, whose general
form is shown in Equation 4.25. A function approximator allows the agent to
generalize from states it has visited to states it has not visited [66]. In the case
of discretizing the state space into a fixed number of bins and storing one value
for each bin [50, 42, 46], a piecewise constant function approximator is used to fit

the value function, where (b4, ..., b,) are box functions, n is the number of bins,

72

and (6y,...,0y,) are the values stored in the bins, as shown in Figure 4.5a. In a
similar case where the state space is discretized but the values are interpolated
among the sampled states [39, 44], a piecewise linear function approximator is
used instead, where (by,...,b,) are linear interpolating functions, as shown
in Figure 4.5b. Piecewise constant and piecewise linear function approxima-
tors are simple to implement, but suffer from the facts that the grid resolution
strongly influences the quality of the solution, which needs to be tuned manu-
ally. However, for simple problems with small state spaces, these might still be
good choices.

More complex basis functions can be used to reduce the size of the func-
tion approximator [22, 81, 82], as illustrated in Figure 4.5c. This can provide
a smooth representation of the value function and achieve considerable com-
pression for large state spaces. The main difficulty, however, is to select a pri-
ori shape of the parametric approximation architecture that may lead to some
good results. If the basis functions are chosen arbitrarily, the learning may
not converge and may even diverge to infinity. Setting up the basis functions
thus requires trial and error, because for a non-trivial task the value function is
usually hard to guess. In Chapter 5, we will introduce an adaptive function ap-
proximator, which is more flexible and robust for learning motion controllers.
An example of an adaptive function approximator is shown in Figure 4.5d. Af-
ter we published our work, Lee et al. [43] adopted a similar idea to adaptively
learn the value function with an octree-based representation.

In this chapter, we always assume the environment is fully observable.
With this assumption, the agent always knows which state it is in. The real
world, however, is partially observable. Although learning with partially ob-
servable MDPs (POMDPs) is important, we opt to leave out introduction to
POMDPs in this chapter, since to our knowledge, it has not been used in char-
acter animation to model the environment. One type of the learning methods,
policy search, is also not covered in this chapter for a similar reason. These
might be interesting topics to explore in future research of learning motion

controllers.

73

Approximated value function Basis functions

V(s) V(s)

» S

(a) Piecewise constant function approximator

v
»n

Vi(s) Vi(s)

V\/ E@\ SO

(b) Piecewise linear function approximator

V(s) V(s)

v
»n

» S

(c) Parametric function approximator

V(s) V(s)

e

(d) Adaptive function approximator

Figure 4.5: Comparisons of different function approximators. The approxi-
mated value functions are shown in the left column, while the corresponding
basis functions are shown in the right column. In the example of parametric
function approximator (c), a Gaussian and a line are used to approximate the
value function.

o» Chapter 5 e

Real-time Planning with Parametric Motion

“We balance probabilities and choose the most likely. It is the scientific use of

the imagination."

SHERLOCK HOLMES

In this chapter, we present a novel approach to learn motion controllers
for real-time character animation based on motion capture data. We employ a
tree-based fitted iteration algorithm for reinforcement learning, which enables us
to generate motions that require planning. This approach is more flexible and
more robust than previous strategies. We also extend the learning framework
to include parameterized motions and interpolation. This enables us to control
the character more precisely with a small amount of motion data. Finally, we

present results of our algorithm for three different types of controllers.

5.1 Contributions

In this chapter we describe a reinforcement learning technique for inter-
active control of human characters. Our approach can generate motions that
require planning, and it allows for precise control using parametric blending

of several motions. Our algorithm includes two main contributions:

e We use a tree-based fitted iteration algorithm to learn control policies.
This approach is more flexible and more robust than previous methods

to construct motion controllers using reinforcement learning.

e We extend the reinforcement learning framework to include parameter-

ized motions and interpolation. This allows us to control characters more

74

75

precisely without requiring an excessive amount of input data.

Several methods have been proposed in computer animation to utilize
reinforcement learning to obtain policies for choosing actions that will increase
long term expected rewards [39, 22, 81, 50]. However, as discussed in Sec-
tion 4.3, having a good approximation of the value function is the key to ob-
taining a good policy. In this work, we adopt regression trees [14] to adaptively
approximate the value function on a continuous state space. Compared to pre-
vious works, our approach converges faster without any assumption about the
shape of the value function. We can support value functions with any possible
shapes.

Moreover, previous works suffer from the limitation that the space of
available motions is discrete. This makes it harder to achieve precise control
such as walking in an exact direction or stepping on an exact point. Parametric
synthesis allows interpolating motions from a parametric space, which is an
abstract space defined by kinematic or physical attributes of motions. By pa-
rameterizing all motion samples in the space, and by blending among multiple
motions, motion interpolation can create novel motions that have specific kine-
matic or physical attributes [86, 65, 29, 30, 55, 67]. In order to provide accurate
control, we present a way to learn parametric motion controllers, which can com-
pute the blending parameters in a near-optimal fashion for real-time motion
control.

The rest of this chapter is organized as follows: We describe our tree-
based fitted iteration algorithm for learning motion controllers in Section 5.2.
We describe how to include parameterized motions into a reinforcement learn-
ing framework in Section 5.3. Finally, we present results of several motion

controllers in Section 5.4 and conclusions and future work in Section 5.5.

5.2 Learning Motion Controllers

In this section we describe a reinforcement learning framework to ob-
tain motion controllers for interactive character animation. Using a database of
atomic motion clips, our goal is to generate natural character motion as a se-
quence of clips. At each time step, the motion controller decides which motion
clip best follows the user input and respects constraints imposed by the envi-

76

ronment. This decision must be made quickly, since time lags are not allowed
in interactive environments. The controller should also be able to achieve user
objectives that require planning ahead of time. In addition, both user input
and the environment should be represented using continuous parameters to
allow for precise control.

The problem formulation is given in Section 4.3, and we use a tree-based
titted iteration algorithm to solve the problem. The algorithm works by observ-
ing the agent’s interactions with the environment and using the observations
to iteratively update the value function. The algorithm is a kernel-based rein-
forcement learning approach [59], which reformulates reinforcement learning
as a sequence of parametric or non-parametric regression problems. In our
work, we use regression trees as an approximation architecture to adaptively
approximate the value function on a continuous state space [14]. We call this
framework tree-based fitted iteration algorithm, for it iteratively fits the tree
structures to the value function. In the rest of this section, we first describe
a general kernel-based approach to learn the optimal value function in Sec-
tion 5.2.1, and then introduce our tree-based algorithm for learning motion

controllers in Section 5.2.2.

5.2.1 Kernel-based Reinforcement Learning

In the case of discrete state spaces, temporal difference class of methods
(e.g. Q-learning algorithm introduced in Section 4.2.3) can be used to learn
the optimal action-value function from an agent’s experience with the environ-
ment. When dealing with continuous or very large discrete state spaces, how-
ever, the action-value function cannot be represented anymore in a tabular form
with one entry for each state-action pair. Although discretization provides a
straightforward way for resolving this issue, it suffers from the facts that the
resolution might strongly influences the quality of the solution, so tuning the
resolution is a tedious manual work. Ormoneit and Sen [59] presents kernel-
based reinforcement learning method to overcome important shortcomings of
temporal difference learning in continuous state domains. They reformulate
the action-value function determination problem as a sequence of kernel-based
regression problems, and allows to fit any (parametric or non-parametric) ap-

proximation architecture to the Q-function.

77

Similarly, we apply the kernel-based approach to approximate the opti-
mal value function. The algorithm starts with an initial value function V that
equals zero everywhere in the state space, and iteratively extend the optimiza-

tion horizon by alternating the following steps until convergence:

1. Generate a set of state samples s, compute their value v based on the

current value function, and add each pair (s,v) to a training set 7,
T« TU{(s,v)]seS,veR}.

The value v of a state s represents the long-term state reward and is given

by
v = max [R(s,a) + YV (s')], (5.1)

ac A

where s’ = f(s,a), as defined in Equation 4.23.

2. Update V by fitting a given approximation architecture to the training set

T, so that for any tuple (s,v) in T, V(s) is as close to v as possible.
3. Update all tuples in 7 using the new value function V.

The algorithm converges when the equilibrium provided in Equation 5.1 is
reached and returns the optimal value function. However, for some function
approximators there is no guarantee that the algorithm actually converges. In-
stead, we can define a priori a maximum number of iterations by computing
the error bound on the sub-optimality, assuming the function approximator

well represents the value function [14]:

’)’NBr
(1-7?%

where Vy is the value function learned after N iterations and B, is the bound

IVN — Vo <2 5.2)

of the reward function. Hence, given a desired level of accuracy, we can fix the
maximum number of iterations by using the righthand side of Equation 5.2 to
compute the minimum value of N. Note that if the approximation architecture
used in Step 2 is not able to provide a good approximation of the value func-
tion, the sub-optimality bound in Equation 5.2 is not accurate, but it can still
be used as a rough estimate for the stopping condition.

78

Finding a suitable approximation architecture for Step 2 is crucial for
the robustness and efficiency of learning the optimal value function. In Sec-
tion 4.3.3, we have summarized some function approximators used in previ-
ous work of learning motion controllers, and these approximators can also
be plugged into the kernel-based RL algorithm. However, Ernest et al. [14]
provide a comprehensive comparison among several function approximators,
including kNN, piecewise constant and piecewise linear grids, and various
tree-based methods. Their study of several application cases shows that the
Extra-trees method [17], which is named for extremely randomized trees and
builds an ensemble of regression trees to approximate the value function, per-
forms significantly better than the other methods. Therefore, we adopt Extra-
trees as our function approximator in Step 2, and we will present details of our
tree-based fitted iteration algorithm in Section 5.2.2.

Generally, a regression tree partitions the training set 7 into several
regions and determines a constant prediction in each region by averaging the
values of the elements from the training set that fall into this region. The Extra-
trees algorithm builds the partition in a top-down manner. For each node, it
selects a cut position for each dimension at random. It then computes a score
for each of the potential cuts to measure the relative variance reduction (as
shown in Equation 5.5), and chooses the one that maximizes the score. The
algorithm stops splitting a node when the number of samples in this node is
less than a pre-defined parameter 7,,;,,. Each regression tree is built indepen-
dently using the whole training set to form the final ensemble of trees, which

are averaged in the end to approximate the value function.

5.2.2 Tree-based Fitted Iteration Algorithm

Our state space S is continuous except for the dimension along the mo-
tion clips A, which is discrete. Hence, we build an ensemble of regression trees
for each clip in the database, but we optimize all the trees at the same time.
Here, we present our tree-based fitted iteration algorithm that includes three

steps: initialization, iteration, and pruning.

Initialization. We initialize the value function V' to zero everywhere on S. We

maintain a training set 74 for each clip A. The training sets are initialized as

79

State space State space :
0 o O o 9 O I o
o © * @) (@) O o I O @)
o potential cuts 'O
o7 % ©) o +==0—- g
O g 9 o |
& e 0 '
O Q © | O
3 g© o R
(ONING) |
(a) Trajectories (b) Splitting partitions
Stat:e space : State space
o, , © o ©
10 o o © o O
] o ! ©
I IO 9) O @)
I O I _ _ _] O
| |
| ©) a_ o @) O |lo
Q © @) ~
| |
(c) Splitting recursively (d) Final regression

Figure 5.1: Illustration of one step in our tree-based fitted iteration. The figure
shows an abstract visualization of state space; it should not be interpreted as
the 2D position of a character. Please refer to Section 5.4 for the precise defini-
tion of state space for different motion controllers. (a) We use the current value
function to generate trajectories that approach the goal, depicted by the red
star. Each circle represents a sample state. The colors denote different motion
clips included in the states. (b) Each sample is added to a training set according
to the clip it includes. For each training set we build an ensemble of regression
trees. Each tree is built in a top-down manner starting with the whole space
as the root node. We generate a potential cut randomly for each dimension
and select the cut with highest score. (c) We recursively split the nodes until
the number of samples in each node is below or equal to n,,,. (d) After tree
construction, the leaf nodes provide a piecewise constant approximation of the
value function, and the final approximation of the value function is obtained
by averaging all the regression trees in the ensemble.

empty sets.

80

Iteration. We illustrate one step of our iteration process in Figure 5.1. In
each step, we first add samples to the training sets 74 by generating a number
of trajectories in the system. Each trajectory starts from a randomly chosen
initial state and finishes when the task goal is achieved, or when a predefined
maximal number of steps is reached. During the trajectories, the action a;

selected at time t is chosen with the current value function V,
a; = argmax [R(s¢,a) + vV (f(st,a))] (5.3)
a

= argmax [R¢(a;_1,a) + vV (f(s¢,a))]. (5.4)

a
For every state s generated in the trajectories, we compute v using Equation
5.1, and then add (s, v) to the the training set of the chosen clip.

After updating the training sets 74, we use the Extra-trees algorithm to
build an ensemble of regression trees for each training set. Each regression tree
is built independently with the whole state space treated as a root node, and
the nodes are recursively split until the number of samples contained in each
node is equal or less than n,,;,. To determine a split at each node, we randomly
pick a cut position for each dimension and compute a corresponding score that
measures the relative variance reduction,
var(N') — %/Ivar(/\/}) — i:&W/\[’var(/\/})

var(N) ’
where N' C T, denotes the subset of samples in the node, N, and N, denote

the samples on the two sides of the cut in the node, and var is the empirical

Score = (5.5)

variance of the sample values v. We make the cut with highest score. When
no more nodes can be split the value function V is updated using the new
regression trees, and all existing tuples in the training sets are also updated
using Equation 5.1.

The sampling and regression steps are repeated until a stopping condi-
tion is reached. We measure the quality of the current value function using the
Bellman residual [4], which is defined as the difference between the two sides
of the Bellman optimality equation 4.3,

V(s) — max [R(s,a) +yV(s)]. (5.6)

Note that V* is the only function leading to a zero Bellman residual for every
possible state. Therefore, the residual measures how close the value function is

81

to the optimal one. In our system, we compute the mean square of the Bellman
residual over the training sets. The iteration is stopped if the residual is below
a predefined threshold.

Pruning. It is nontrivial for the user to specity n,,;,, the minimal sample size
for splitting a node, and the optimal value may vary for different tasks and for
different sizes of training sets. Therefore, we use pruning as a post-processing
step to automatically determine the maximal number of samples in a leaf.
Pruning is carried out by selecting at random two thirds of the elements of
T, re-building trees for every possible value of n,,;,, with this smaller training
set, and determining with which value of n,,;, the square error over the last
third samples is minimized. Then, we run the Extra-trees algorithm again on

the whole training set 7 using this optimal value of n,,;,.

Convergence. Although the Extra-trees algorithm can well extract informa-
tion from the training sets, it does not guarantee convergence, since it readjusts
the approximation architecture, i.e., the tree structure, to the new expected
rewards at each iteration. However, and contrary to many parametric approx-
imation schemes, it does not lead to divergence to infinity problems, but just
oscillates around some value [14]. To ensure convergence in our system, we
freeze the tree structure and stop adding new samples after it begins to os-
cillate or after the number of iterations exceeds some predefined number. It

converges fast with a frozen tree structure.

5.3 Incorporating Parameterized Motion Groups

One of the challenges of character animation based on motion data is
that it may require large databases and excessive sampling of the continuous
space of motions to allow for precise control of generated motion. Moreover, in
our context it would lead to large precomputation and memory requirements
to learn and store a value function for each clip in a large database. Here, we
present an approach to incorporate parameterized motion groups in our rein-
forcement learning framework. We effectively reduce the number of actions by

clustering similar motions, alleviating the precomputation and storage cost. In

82

addition, each group forms a parameterized subspace of motion. This allows
us to obtain precise control over the synthesized motion by continuously inter-
polating in this space. In the following paragraphs, we first explain how we
pre-process our motion data. Then we describe how we cluster motion clips
into groups and how we define transition costs between the groups. Finally
we demonstrate how to modify the transition function so that the planning

controller can work with parameterized groups.

Pre-processing. We manually segment motion data into short motion clips.
Our current database includes walking and grasping motions. We define con-
straint frames for each clip similar to Treuille et al. [81]. The constraint frames
are used to temporally align consecutive clips. This allows us to construct a
valid animation from any sequence of clips, and to prevent foot-skating. We do
not need to construct an explicit graph structure, because unnatural and non-
smooth transitions will be avoided by the reinforcement learning approach
with the transition reward. To construct a desired controller, we design a state
space represented by parameters (Xi,...,X,) € R". We parameterize each
motion clip by determining the change (dX3,...,dX,) € R" caused by the clip.

Hence, the transition function in Equation 4.23 can be re-written as:
f(s,a) =5 = (a,x1 +dx{,..., x, +dx2), (5.7)

where dx{,...,dx} are the changes of state parameters caused by taking action
a. We illustrate this using a navigation controller in Figure 5.2a. For more

examples we refer to our results in Section 5.4.

Clustering. In the clustering step, we group similar motions together to share
a single value function. Because motion clips are characterized by their instan-
taneous reward for the purpose of learning, it is reasonable to classify clips
with similar reward functions into one group. Our reinforcement learning al-
gorithm is then based on groups of motion clips rather than on individual
clips.

To determine clips with similar rewards, remember that the reward is
composed of a transition reward and a state reward. Any two motions that

are numerically similar [30] will have a similar transition reward. On the other

83

| de
-1 \\\ 0 | | T
Sharp left turn Right Turn Sharp right turn
(a) Parameterization of the clips
—O0—3A00 OOHO—O———O0—O0-0——O0— 4o

S
a

-

(b) Clustering

Figure 5.2: Parameterized groups for the navigation controller, which has only
one parameter 6. The value of 0 represents the difference between the current
and desired walking directions. (a) The motion clips (yellow circles) are param-
eterized by the change in torso orientation 46. Blue and red arrows indicate
the character’s orientation in the first and last frame of the clip, respectively.
(b) Parameterized groups. Each group has one corresponding value function.

hand, the state reward measures how well a state fulfills the goal of the con-
troller. According to the transition function in Equation 5.7, if two motions
have similar parameters (dXy,...,dX,), they will lead to similar states. There-
fore they will have similar state rewards. Following these observations, we
group together motions that are numerically similar and close in the paramet-
ric space. In our current implementation, clustering is performed manually.
We illustrate clustering for the navigation controller in Figure 5.2b. Note that
a motion clip may belong to several groups. This allows us to make sure that
the parameter domain is covered completely by the groups.

Clustering allow us to interpolate in a continuous space of motions
spanned by the group members. We use registration curves [29] to perform
the interpolation. In other words, each group represents a range of motions
instead of a single motion. This allows us to achieve more precise control as

shown in Section 5.4.

84

Transition Cost. We define the transition cost R¢(a,4’) between two groups
simply as the average of the pairwise transition costs of all clips in the two
groups. This is justified because the clips in each group are similar and each

pair of clips will have a similar cost.

Parametric Transition Function. We define a modified transition function to
incorporate parameterized groups into the reinforcement learning framework.
Now an action a € A corresponds to the selection of a parameterized group,
which represents a continuous range of motions. The long-term reward of
taking an action a from the current state is determined by finding an instance
on the continuous motion space defined by group a that maximizes the value
function.

Assuming there are m members in the group 4, we use blending weights
w,; = (wj...wy) to characterize any motion interpolated in the group. We
further denote the changes of parameter X; induced by each memeber in group
a as a vector dxj. The parametric change given by a set of blending weights is
therefore the vector

(wg-dxi,..., w,-dxj,).

Given a current state s = (&, x1,...,x,), where a denotes the currently played
motion (to be distinguished from the next action a), the maximum of the value
function for a potential next action a happens at

w, = argmax V (a,x1 + w, -dx],..., x, +w, - dx}). (5.8)

wy

This is also illustrated in Figures 5.3a and 5.3b. In our implementation we solve
the above equation by uniformly sampling the space of blending parameters
w, and picking the one with the highest value. Once the blending weights are

determined, the transition function for any state is

f(s,a) =5 = (a,x;1+w,-dx{,..., xy +w, -dx}). (5.9)

Parametric Motion Controller. At run time, whenever a motion clip finishes,
the controller selects the next group with Equation 5.4. More precisely, this is
achieved by scanning every group as a potential next action 4, and by using
the optimal blending parameters from Equation 5.8 to compute the transition
with Equation 5.9.

85

A <
V(o , .
i) best solution current /\ // desired
t walking © direction
direction /
|
|
|
|
|
|
|
|
:
|
| //
-7 3 6 5 T >6 character
a) Value function of one grou b) Parameter range
group g

Figure 5.3: Finding the optimal blending parameter in a parameterized group.
(a) The example value function of the group shaded in Figure 5.2b. Assume the
current value of 0 is §, the shaded area represents the possible values of 6 in the
next time step, with the use of any motion from this group. (b) Visualization of
the variables in (a). If the controller picks the best solution in the shaded area
in (a), the character will turn exactly toward the desired direction in the next
time step.

5.4 Results

We learned three different controllers to demonstrate our method: nav-

igation, grasping, and guidance.

Navigation. The navigation controller allows a user to navigate a character
through an environment by specifying its desired walking direction. A state
is given by s = (a,0), where the parameter 6 € [—7, 71) measures the angle
between the current and the desired walking direction. We define the state
reward function as

Rs(s) = —ulf], (5.10)

where « is a scaling parameter.

Grasping. With the grasping controller, the goal of the character is to grasp an
object that is at an arbitrary position relative to the character. The object can be

86

gate

coordinate

(a) Grasping (b) Guidance

Figure 5.4: State variables for the grasping (a) and guidance controller (b). The
red star and arrow indicate the position and orientation of the gate, and 6 is
the angle between the the gate and the walking direction of the character.

moved around in real-time, and the character will immediately adjust its path
accordingly. Once the character is within reach of the object, the controller
picks an optimal way to grasp it according to its relative position.

We define a state for this controller as s = (a,u,v), where u and v rep-
resent the position of the object projected onto the ground plane in local co-
ordinates of the character, as shown in Figure 5.4a. The state reward function
is

A if the object is reachable,
Rs(s) = (5.11)

0 else,
where A is a constant. The motion database for this controller includes walking
steps and grasping motions. All clips are parameterized with the change in the
object’s relative position and clustered as described in Section 5.3. The param-
eterized grasping motions allow the character to reach the object accurately

using motion blending.

Guidance. The goal of this controller is to guide a character to walk through a
gate without bumping into walls and doors. We define a state as s = (2,6, u,v).
Here, (u,v) is the position of the center of the gate and 6 its orientation, both

relative to the character. We illustrate the set-up in Figure 5.4b. Our state

Time | #groups | #7 | Storage
Navigation 5s 18 13,752 | 138KB
Guidance 4 min 8 48,000 | 125KB
Grasping 20 min 17 178,007 | 460KB

Figure 5.5: Statistics of our motion controllers, where Time means the learning
time.

reward function is

—A if close to the obstacles,

Rs(s) = . (5.12)

s else,

—0(1’9| — 2

where a1 and a; are scaling parameters, and A is a very large constant. In-
tuitively, this reward function penalizes states where the character is close to
the walls and doors around the opening of the gate. In addition, it guides
the character towards the center of the gate while maintaining the appropriate
torso orientation to pass through the gate.

Figure 5.5 shows the statistics of our controllers. At run time, it takes less

than 1ms to select the best next clip on a Quad Core 2.4 GHz Intel processor.

5.4.1 Motion Planning

One of the advantages of motion planning is that we can generate ani-
mations by just specifying a goal, rather than indicating how a character should
fulfill a task. We simply formulate the goal as a reward function. For exam-
ple for our grasping controller, we only need to specify that the character will
obtain a reward if he reaches the object. We do not need to tell the character
how to approach the object. In a traditional greedy controller, which picks
the best next action without planning into the future, this approach would fail
completely. The greedy policy is usually defined as

Tlereedy(s) = argmax [R¢(a,a) + Rs (f(s,a))] - (5.13)

ac A
In the grasping problem, however, the state reward R;(s) is zero when the ob-
ject is not reachable. Therefore the character would just walk away as shown in

Figure 5.11b. Planning also allows characters to prepare well for obstacles. For

88

IM]

Figure 5.6: The greedy strategy in the guidance controller. In this experiment
tive out of ten characters bumped into the gate. With our planning controller,
however, every character successfully enters it. The starting position and ori-
entation of each character is randomly decided in real-time.

example, if we use the greedy strategy with the guidance controller, charac-
ters often run into the gate as illustrated in Figure 5.6. With our approach the
characters plan several steps ahead and they successfully avoid the obstacles.

5.4.2 Extra-trees Regression

We compare the navigation controller learned with the work proposed
by Treuille et al. to our method. We use twenty motion clips for training,
and each clip contains one single walk cycle. Treuille et al. approximate the
value function by solving the coefficient vector r of 2nd-degree polynomials
V & r1 + 120 + r30%. They observed that the quadratic polynomials are only
about 11% different from 10th-degree polynomials. Since their method takes
much longer to learn with higher order polynomials, they adopted 2nd-degree
polynomials for this controller. We use two metrics to asses the performances
of the algorithms. The first one measures the quality of the regressions: we
randomly sample one thousand states (which may or may not be in 7) and
average the Bellman residuals in Equation 5.6. The lower the residual, the
closer the approximation is to the optimal value function. The second metric
measures the quality of the policy: we randomly sample one thousand initial
states, trace ten steps from them individually by each policy, and average the
long term rewards achieved. The higher the average reward, the better the

89

100 V(0) 100 V()

-100
-200

-100

-200
-300

-400 300r

-500 -400 F

-600 0 -500 0
-3.14 3.14 -3.14 3.14

(a) (b)

Figure 5.7: Value function of the navigation controller. (a) Tree-based regres-
sion. (b) Regression using polynomials.

#7 | Time | Bellman residual | Average reward | Storage
[81] | 15920 | 7s 6490.31 -328 1k
Ours | 15,960 | 3s 48.45 -231 198k

Figure 5.8: Comparison between previous work and our regression method.
With our approach, we are able to obtain a better controller in a shorter amount
of time.

policy performs. We show quantitative results in Figure 5.8, illustrating that
our method is scores much better according to these metrics. Our learning time
is also much shorter, although we need more memory, because we store tree
representations of the value function, while they only need to store coefficient
vectors r. In Figure 5.7 we visualize the approximated value functions for one
clip. This shows that the second order polynomial is not an accurate model for
the navigation controller.

We also did the same experiment with the fixed-obstacle-avoidance con-
troller proposed in previous work [81]. Treuille et al. never require more than
one hour to learn the controller. Our approach yields a useful controller in less
than ten minutes.

For more complex control systems it is hard to approximate the shape of
the value function well with a small number of manually designed basis func-
tions. In our experience, the regression algorithm [81] often fails to converge if
the basis functions are chosen inappropriately. In contrast, our tree-based algo-

rithm does not make any assumptions about the shape of the value function.

90

Figure 5.9: Value function of the grasping controller. (a) “Ground truth” using
about two million samples, three hours learning time. (b) Regression from six
thousand samples, less than three minutes learning time.

Figure 5.9a illustrates the complex shape of the value function for the grasp-
ing controller. We used dense sampling (about 2 million samples) to obtain a
“ground truth” solution in about three hours. Polynomials and Gaussians are
ill-suited for approximating value functions such as this one. It is asymmetric,
has abrupt changes and even a pit in the middle; but this does not pose a prob-
lem for our algorithm. The v axis is asymmetric because it is better to face an
object to grasp it, rather than turning one’s back to it. Since the reward for suc-
cessfully grasping the object is a constant, there is a constant plateau near the
center. The plateau is slightly off-center because grasping is performed with
the right hand. The other plateaus represent the steps needed to walk toward
the peak region. For example, if the character’s state is in the first plateau near
the peak, he needs one more step before being able to grasp. If the character
is too close to the object, it is also very difficult to grasp, hence there is a pit
in the center of the value function. Figure 5.9b shows a regression computed
from six thousand samples in less than three minutes. Here we store about
1700 leaves in the regression tree. This shows that we can obtain a reasonable
approximation in a short time.

5.4.3 Parametric Synthesis

The advantage of parametric synthesis is that we gain more precise con-

trol. As shown in Figure 5.2c the optimal value may lie between existing mo-

91

#T | Time | Bellman residual | Average reward
non-parametric | 15,960 | 3s 48.45 -231
parametric 13,752 | 5s 29.63 -161

Figure 5.10: Comparison between parametric and non-parametric planning
controllers.

tions. Therefore controllers with non-parameterized motions can only pick
sub-optimal clips. Figure 5.10 shows quantitative improvements of parame-
terized motions for the navigation controller. Figures 5.11c and 5.11d show
a comparison with the grasping controller. Without parameterized motions,
none of the existing clips initially leads to a good position for grasping the
object, so the character takes a detour (Figure 5.11c). With parametric synthe-
sis, a novel motion with optimal value is synthesized and the character turns

immediately to grasp the object (Figure 5.11d).

5.4.4 Near-optimal Control

In this experiment, we demonstrate that our controller makes near-
optimal decisions in real-time. We modified the reward function of the grasp-
ing controller to take into account the effort required for the grasping motion.
In general, the effort needed to perform a motion can be approximated by the
sum of squared torques computed via inverse dynamics. Figure 5.12b shows
the result when the reward is inversely proportional to the effort required for
grasping. This motivates the character to step close to the object and pick it in
the easiest way. If the reward is positively proportional to the effort required
for grasping the character stops at a distance and picks the object in the hard-
est way, as shown in Figure 5.12c. This demonstrates that the character plans

ahead to maximize the long term reward.

5.5 Conclusions

We presented a reinforcement learning framework to obtain motion con-
trollers with parameterized motions. We use a tree-based fitted iteration algo-
rithm to approximate the optimal long-term reward function. This approach

is more flexible and more robust than previous methods, and enables us to

92

(c) Planning controller (d) Parametric planning controller

Figure 5.11: Comparison of different grasping controllers. (a) Every controller
starts with the same first clip. (b) Greedy controller. (c) Planning controller
with non-parameterized motions. (d) Planning controller with parameterized
motions.

design reward functions in a straightforward way. We also described how to
incorporate parameterized motions into the learning framework. This allows
us to control characters more precisely with a limited amount of input data.
We demonstrate that our approach generates natural animation in real-time
for different tasks that require planning.

We believe that the major limitation of our approach is the problem of
dimensionality. For more complex environments we need more control pa-
rameters to define the state space. Unfortunately, computing time and mem-
ory requirements increase superlinearly with the number of dimensions, as
more motion data and training samples are required to properly cover the
state space. Hence, it is important to sample the high dimensional space ef-
tectively. The active learning framework proposed by Cooper et al. [12] could

be useful, for it can adaptively determine which motions to add to the system,

(a) Independent (b) Inversely proportional (c) Proportional
of the effort to the effort to the effort

Figure 5.12: Real-time near-optimal control. The character is asked to grasp
the object (a) in any way, (b) in the easiest way, and (c) in the hardest way.

avoiding capturing and storing nonessential motions. Shum et al. [73] also
utilize reinforcement learning for human interactions, and they observe that
the subspace of meaningful interactions occupies only a small fraction of the
whole state space. They thus propose a way to efficiently collect samples by
exploring the subspace where dense interaction occurs. This sampling strat-
egy might also help for high dimensional state spaces. We believe that our
approach to include parameterized motions in a reinforcement learning frame-
work is a first step to make this technique more practical. However, future
research is required to extend it to more complex environments.

This chapter is based on “Real-Time Planning for Parameterized Human
Motion”, Wan-Yen Lo and Matthias Zwicker, ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 2008.

o» Chapter 6 e
Learning with Adaptive Depth Perception

“Learning does not make one learned: there are those who have knowledge and
those who have understanding. The first requires memory and the second

philosophy."

ALEXANDRE DumMaAs

Reinforcement learning is appealing to character control due to its abil-
ity to make near-optimal decisions in real-time, even taking into account cumu-
lative rewards for actions in the future. Unfortunately, given a desired character
behavior, it is often difficult to find a suitable representation of the character’s
environment. The environment has to be carefully parameterized to limit the
dimensionality of the character’s state space, as failure to bound the number of
state parameters would deteriorate the learning performance. But a too specific
state representation also has disadvantages. For example, a controller learned
to navigate through circular obstacles, parameterized by their radii, can hardly
navigate through sharp obstacles, which are not well described by radii. Cur-
rently, controllers are manually parametrized for each task and environment.
This process is tedious, and a small change in the state representation requires
the learning process to be repeated.

In this chapter, we propose a method which skips this design phase, by
letting the character directly “see” the environment using depth perception.
Since the large amount of visual information is intractable for learning, we
avoid the “curse of dimensionality” by introducing a hierarchical state model
and a novel regression algorithm. We build a hierarchical state model by sub-
sampling the input percept, based on the observation that high resolution vi-

sion is not always required. When objects are far, blurry vision is enough to

94

95

make a good decision; when objects are close, clear vision is needed. Also,
in general, objects in front of the character require clearer vision than those
in other directions. We do not, however, explicitly specify a level of detail
for any given situation. Instead, we allow the resolution of visual percepts to
be adapted automatically to the scene complexity, and found that the learned
controllers confirm this intuition. Finally, we demonstrate that our controllers
allow a character to navigate or survive in environments containing arbitrarily
shaped obstacles, which is hard to achieve with previous reinforcement learn-

ing frameworks.

6.1 Contributions

In this chapter, we propose a method that does not require any ad-hoc
parametrization of the environment. Instead of letting the character read a
manually interpreted description of the environment, we allow the character

to perceive depth directly. We present the following contributions:

e A hierarchical state model for reinforcement learning to replace a single

state definition of fixed dimensionality.

e The use of a hierarchical state model in character animation to allow
characters to perceive depth. Our approach avoids the need to carefully
design ad-hoc parameterizations of environments based on their specific

properties.

e An efficient reinforcement learning algorithm that integrates our hierar-
chical state model. To this end, we present a regression algorithm with

automatic resolution adaptation based on scene complexity.

In robotics and artificial intelligence, vision-based sensing has been com-
bined with local path planning [51, 9] and reinforcement learning [52, 23,
24], allowing the agent to navigate toward the goal while avoiding obstacles.
Michels et al. [52] define a state by dividing the image into a set of directions.
Each direction is a vertical stripe encoding the log distance to the nearest ob-
stacle. However, the number of stripes is pre-defined and does not adapt to
scene complexity. On the other hand, Jodogne and Piater [24] argue that most

96

approaches in RL rely on preprocessing the visual input to extract task-relevant
information. To avoid task specific coding, they use an automatic image clas-
sifier to partition the visual space adaptively while learning. However, they
use a fixed map to train the classifier and any change in the map requires the
classifier to be retrained.

In computer graphics, we can use synthetic vision to replace real cam-
eras. With modern graphics hardware, accurate visual percepts are obtained
efficiently while the problems of depth reconstruction or object recognition
from noisy images are avoided. Synthetic vision has already been used in com-
puter graphics for steering virtual humans [56, 32, 61, 58]. However, without
pre-planning, computing the solution at run-time leads to a trade-off between
optimality and efficiency. In applied perception, Sprague et al. [76] introduce
a more elaborate visual model by allowing the virtual character to control the
gaze, and use RL algorithms for building mappings from visual percepts to
body movements. However, their definitions of state and action space in the
RL framework are simple: their obstacle avoidance controller can only take into
account one nearest obstacle and three possible turn angles. On the contrary,
our perception model does not limit the number of objects in the scene. Our
state definition is similar to the one used by Michels et al. [52], but inspired by
Jodogne and Piater’s work [23], we subdivide the depth percepts adaptively to
adjust the level of discretization dynamically and automatically according to
the complexity of the scene. Applying our state model to RL, we can achieve
near-optimal character control in real-time.

The reinforcement learning framework for learning motion controllers
has been introduced in Section 4.3, and this chapter is organized as follows.
In Section 6.2, we first explain how virtual environments are parameterized
in previous RL frameworks, and then propose our approach based on visual
percepts that does not require ad-hoc parameterization of each different type
of environment. Learning directly with the visual percepts, however, suffers
from the curse of dimensionality. To overcome the problem, we introduce a hi-
erarchical state model in Section 6.3, and present a novel regression algorithm
to allow learning motion controllers with adaptive depth perception in Sec-
tion 6.4. Finally, we show comparisons and results in Section 6.5 and conclude

this chapter in Section 6.6.

97

6.2 State Representation

Previous works show that finding a state representation for efficient
learning remains challenging. Most state representations are tailored for each
specific task, in order to be complete enough to make decisions, but also con-
cise enough to avoid the curse of dimensionality. Lee and Popovi¢ [42] demon-
strate motion controllers on environments with varying number and shapes of
obstacles, but they define a state only with the character’s absolute location in
the environment, assuming the environment is fixed. For every change in the
environment, a new controller must be learned. To support arbitrary config-
urations, many previous works parameterize each object in the environment
explicitly, but in order to simplify the state representation only a fixed small
number of objects can be parameterized at a time [81, 49, 43, 46]. Typically, the

task parameters (Section 4.1) are defined as

0= (xll Y1,81, -+ - s Xms Ym, Sm)/ (61)

where m is the number of objects in the environment, and (x;,y;) and s; are
the relative position and shape description of the ith object respectively. The
value of m is predefined, yet allowing more objects in the environment makes
the learning problem harder. We show in Section 6.5.2 that by increasing m,
the learning performance and the quality of the controller deteriorate quickly.
Although we can consider only the m closest objects instead of all objects in the
environment, there may be more than m objects equally close to the character.
Unable to perceive its complete situation, the character may easily make a fa-
tal decision. Moreover, the descriptive power of shape parameter s; is usually
limited to avoid high dimensionality, which explains the popular use of cylin-
ders in previous work. Finally, a controller learned with one shape description
cannot be easily generalized to other shape descriptions.

A natural way to resolve this complexity is to let the character directly
“see” the environment, by defining a state with the character’s vision. One way
to model the character’s perception is to use an overhead camera and represent
the character’s local surroundings with a grid of binary valued cells [22, 51].
The value in each cell denotes whether the location is occupied by an obsta-
cle. However, we found that by rendering the scene from the first person
view [32] and by dividing the image into vertical stripes [52], we obtain a more

98

= \eas

(a) Overhead view

R W

b) First person view

Figure 6.1: Comparison of perception models using overhead view (a) and
tirst person view (b). The blue regions are real obstacles and the gray regions
are their representations in the perception model. In this example, the over-
head view classifies the two different environments as the same, while the first
person view successfully discriminates them.

descriptive representation with fewer parameters, as shown in Figure 6.1. More
specifically, we mount virtual cameras on the character to capture n depth val-
ues from the character’s panoramic field of view, and store for each stripe i the
distance d; to the closest object. Therefore, we define the task parameters in a
state as

0= (dy,..., dn). (6.2)

However, it is difficult to use this representation directly in existing RL frame-
works, since the value of n needs to be predefined. If the value is too small,
the state representation is not descriptive enough for the learning algorithms to
converge. If the value is too large, the problem is again cursed by dimension-
ality. Therefore, we propose a hierarchical state model and a novel regression
algorithm to allow the use of depth perception in RL frameworks.

99

dz d4 d4
4 1 4 2 4 1
- s e
d, d, d d,
(a) (b) (c)

Figure 6.2: Visualization of our hierarchical state model. (a) When n = 1,
the depth value d} indicates the distance to the closest object in the scene. (b)
When n = 2, the two depth values indicate the shortest distances to any object
in the front and in the back respectively. (c) With n = 4, the character can now
tell there are objects in one of the directions, but none in other directions.

6.3 Hierarchical State Model

We propose a novel approach to adjust the dimensionality of the per-
ception automatically and adaptively in the learning process. Our approach is
based on the observation that high resolution vision is not always required, but
low resolutions vision is sometimes enough for making good decisions. Hence,
we build a hierarchy by sub-sampling the input percept, and reformulate the

task parameters using a hierarchical representation
0= (d",d?,di,...,d"), (6.3)

where n denotes the finest resolution of the character’s perception, and we let

n to be a power of 2 to simplify the definition. The vector d' is defined as
d' = (di,d5,ds, ... d),i=1,2,4,...,n, (6.4)

where i represents the level of sub-sampled vision, and d;'. corresponds to a non-
negative depth value. The perception with the highest resolution is directly
obtained from the camera mounted on the character, and for other resolutions

the depth values are computed as
di = min (3,431,). (6.5)

These definitions are visualized in Figure 6.2.

100

6.4 Adaptive Learning

In this section, we first explain our choice of the learning algorithm and
then present a novel regression algorithm to allow learning with the hierarchi-
cal state model. Since the depth perception model does not allow the character
to see everything in the environment (some objects may be occluded), the tran-
sition model T in our MDP is stochastic and unknown. Hence, we approximate
the optimal action-value function (Equation 4.4), instead of the optimal value
function (Equation 4.1), because Equation 4.6 is more favorable for decision
making for its simplicity, especially when performing one-step look-ahead is
expensive or the transition model is unknown. We approximate Q* using the
fitted Q iteration algorithm [15], which reformulates the Q-function determina-
tion problem a sequence of kernel-based regression problems (see Section 5.2.1
for discussion and Algorithm 1 for pseudo codes). The algorithm takes as input
an approximation architecture, and a sequence of the character’s interactions
with the environment (s, ay, 14, 514+1), where r; € R is the reward of taking ac-
tion a; in state s;. The algorithm iteratively updates the action-value function

and uses the updated policy to generate new sequences of interactions.

Algorithm 1 Fitted Q Iteration Algorithm
Input: a set of transition tuples 7 and an approximation architecture F

Output: an approximation of the optimal action-value function Q*

1: n+0

2: Qn +—0

3: repeat

4: n<—n+1

5 for all (s, a¢,7¢,8141) in T do

6 xt = (St,a4)

7: ye =1t + ymaxgea Qn-1(se41,4)

8 end for

9 Use F to induce O, from {(xt,yt) :t=1,...|T|}
10: Generate new transitions with O, and insert them into 7.

11: until |[Qyn — Q1| < €4
12: return Qn

101

(a) Uniform grid (b) Adaptive regression (c) Hierarchical
adaptive regression

Figure 6.3: Illustration of the depth perception space discretized with (a) uni-
form grid, (b) adaptive regression, and (c) hierarchical adaptive regression.
The resolution of perception is fixed for (a) and (b), shown by the black an-
gular dividers. But with adaptive regression (b), each dimension is discretized
adaptively, shown as red radial dividers. With our hierarchical regression algo-
rithm, the resolution can be adaptively adjusted and each dimension can also
be adaptively discretized.

We choose Extra-trees (Section 5.2.1 and Section 5.2.2) as the approxi-
mation architecture in Algorithm 1. The Extra-trees algorithm works with a
tixed hierarchy and builds regression trees to adaptively discretize the state
space in each dimension of Equation 6.2. Compared to the use of a uniform
grid, as shown in Figure 6.3a, adaptive regression allows some portions of the
perception space to be discretized finer than others, as shown in Figure 6.3b.
This provides better approximation of the action-value function, because if the
object is far from the character, a displacement does not affect the long term
expected reward as much as if the object is close. Therefore, the state space can
be well represented with coarse nodes when the distance values are large, and
with fine nodes when the values are small, as shown in Figure 6.4.

The Extra-trees algorithm allows us to discretize each dimension in
Equation 6.2 adaptively but it does not allow us to adaptively adjust the num-
ber of dimensions n. In order to adaptively discretize the perception space
in both radial and angular directions, as shown in Figure 6.3c, we present a
regression algorithm that works with the hierarchical state model introduced

in Section 6.3. Our Hierarchical Extra-trees algorithm maintains the original

102

2 1 2 1 d1
A
Sl 52
®@s
d, d, d, d, 1
®s,
@s
3
BS
#4 > dz
S, S,
(a) States s, s,, s, s, (b) Regression tree

Figure 6.4: Example of evaluating Q(s,a) for different input states shown in
(a), using the regression tree (b). The state space consists of two dimensions d
and d,. Taking the same action for states s; and s, results in similar values, so
they are located in the same leaf node of the regression tree. But for states s3
and sy, the values are different and they are therefore located in different leaf
nodes.

framework of iteratively selecting a node split that leads to highest relative
variance reduction, while allowing the set of dimensions be adjusted in a hier-
archical way. In Algorithm 2, Line 7-16 is our modification, while the rest is
from the original Extra-trees algorithm.

We start this recursive regression algorithm using the lowest resolution
of depth perception, so the input D equals to {(1,1)}, that is, only the value of
di is considered in 0. In the first few splits, blurry vision is sufficient for dis-
criminating between hostile and preferable states. However, after the character
has learned enough using the blurry vision, further splitting along any par-
ticular input dimension yields no satisfying variance reduction (Line 7, where
€; is a pre-defined threshold). Since the current set of dimensions cannot dis-
criminate more complex situations, our adaptive strategy is to increase the
resolution of the perception, by refining the input set of dimensions D. For
each dimension in use, we check if we can get better variance reduction by re-

placing it with its two finer-level dimensions (Line 8-9), and we replace the one

103

Algorithm 2 Hierarchical Extra-Trees Algorithm

Input: 7' = {(xt = (st,at),yt) } and D = {(4,])}

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:

procedure SpLiTNODE(7”, D)

for all (i,j) in D do
Find a random split value ¢; ;
Compute the relative variance reduction 7; ;
end for
(a,b) < argmin; ;r;;
if 7, < €5 then
D'« {(2i,2)),(2i,2j —1),Y(i,j) € D}
Repeat 1-6 using D’ to get (a’,1")
if 7,y > 1, then
(p) < (5. 15))
D <D\ {(p.q)}
D+ DU{(2p,29),(2p,29+1)}
(a,b) < (a', 1)
end if
end if
T {(xt, ye)lse.dy < cap}
Tr < {(xe,y0)lsr.dy = cap}
SplitNode(7/, D)
SplitNode (7%, D)

21: end procedure

with the best improvement (Line 10-15). The subtrees from this node will use

this new set of dimensions (Line 19-20) until it is not descriptive enough and

refined again. Hence, each node in the regression tree might use a different

set of dimensions for splitting the state space, as illustrated in Figure 6.5. The

adaptive refinement stops when the finest resolution level n is reached.

6.5 Results

We collect a few minutes of motion capture data of a person walking

around, and organize the data by building a well-connected motion graph [93]

104

/ split \

reflne & split \ split

Figure 6.5: Illustration of building a regression tree with our hierarchical re-
gression algorithm. “Split” (shown in red) is what the original Extra-trees al-
gorithm does, “refine” (shown in green) means refinement of our hierarchical
state model. The initial state consists of one-dimensional perception with low-
est resolution. First we find a cut along the dimension and split the root node
into a left and right subtree. The right subtree represents those states where
even the closest object is distant from the character. When all the objects are far,
blurred vision is enough, so no state refinement is required. If the character is
in a state represented by the left subtree, there is at least one close object, and
the character requires clearer vision to judge the situation. Hence, only after
the resolution of the perception is increased can we find a cut to sufficiently
reduce the variance.

to ensure smooth transitions between motion segments. The graph contains
2173 nodes and 2276 links. We further collapse the links with only one succes-
sor and one predecessor and merge those nodes on the links. The final graph
contains 25 nodes and 128 links. Each graph link corresponds to an action in
our MDP.

To simulate the character’s vision, we place four cameras on the body,
each with 90 degrees field of view, covering the panoramic vision. We use
object false-coloring for rendering different object types, e.g., goals and obsta-

cles. Instead of introducing extra dimensions in the state definition to store the

105

types, we use a set of dimensions for each object type separately.

The remaining section is organized as follows. We first explain the ex-
periment setup in Section 6.5.1. We demonstrate the effectiveness of using the
depth perception model in 6.5.2. We further show in Section 6.5.3 that by ad-
justing the perception adaptively, the learning efficiency is greatly improved.
We analyze the optimality and generalizability of the result controllers in Sec-
tion 6.5.4 and Section 6.5.5 respectively. In the end, in Section 6.5.6, we use a
game-like scenario to highlight the advantage of applying reinforcement learn-

ing in real-time applications.

6.5.1 Experiment Setup

In Section 6.5.2-6.5.5, we make comparisons by learning navigation con-
trollers. The objective of a navigation controller is to guide the character to a
goal without colliding with any obstacle in the scene. Our reward function
is defined as: 4100 for stopping in a goal region, —200 for collision, —1 for
each second elapsed, and the transition cost of concatenating two motion frag-
ments. When acquiring the character’s perception, we render the goal objects
in a separate pass so the character can always see the goal, but the obstacles
will occlude each other. All the comparisons are made on a PC with a Xeon
2.50GHz dual 4-core CPU and 8GB memory, using the same learning frame-

work:

e We rebuild regression trees using the (hierarchical) Extra-trees algorithm
in each of the first 50 iterations of the fitted Q iteration algorithm. After
50 iterations, we freeze the tree structure, stop generating new transition
samples, and let the algorithm run until convergence. The convergence
parameter €, in Algorithm 1 is set to be 0.0001.

e The transition samples (s, a¢,1¢,514+1) are obtained by generating trajec-
tories in different environments with varying number and position of
objects. Each trajectory starts from a random initial position and finishes
when a goal is reached, or when it reaches 100 time steps. In each it-
eration of fitted Q iteration algorithm, we simulate N trajectories with
e-greedy exploration, where the agent chooses a random action with prob-
ability € and follows the currently learned policy with probability 1 - €.

106

In our setup, € = 0.1.

e We build 10 regression trees to approximate an action-value function
Q(s,a), that is, having 128 actions in our MDP, we produce 1280 regres-
sion trees for a motion controller. Although more regression trees can
provide a better, smoother approximation of Q, the learning time and
memory requirement increase linearly. Empirically we found 10 trees

provide good approximations within a reasonable amount of time.

To assess the quality of a motion controller, we run simulations with the
controller to compute the average expected return. We start each simulation by
placing the character randomly in a random environment, and run the simula-
tion by using the controller to navigate the character. The expected return of a
simulation is computed as 2}2000 Y'R(st,at). In the end, we average the expected
returns from all simulations to obtain the score of a controller. The higher the
score is, the better the controller performs. To make fair comparisons, we fix
a set of 10,000 random environments and initial states, so the average scores
of different controllers are directly comparable. Finally, since the learning al-
gorithm is randomized, we repeat the learning process three times for each

experiment and average the scores and running time.

6.5.2 Depth Perception

We first compare the conventional state representation using explicit
parameterization of obstacles with our novel approach based on depth per-
ception. The environment contains a goal object and m obstacles. All objects
are cylinders with variable sizes. In this comparison, the task parameters 0°
(explicit parameterization) and 64 (depth perception) are defined respectively

as

0° = (X1, 1,81, - - -, Xm+1, Ym+1, Am+1)
d
9 - (dfldgldgldil (ffdg;dg/d?ﬁ/

where (x;,y;) and a; = tan™! (r;/(/x? + y?) denote the relative position and
viewing angle of the ith object whose radius is r;; (d“f, dg, d§, d‘i) denote the

character’s depth perception of the goal in four directions; (d{,d3,d3,dj) are

107

[Explicit Parameterization
0 _‘\H\‘\‘\A 120F— —— Depth perception]
5 "2 100
-50F =
S . £
A -100¢ =
L ()
. g 60
-150 =
[/‘
[Explicit Parameterization 0 A/‘/A———k——"
'200: —— Depth perception N 20
1 2 3 4 5 6] 2 3 4 5 6
#Obstacles #Obstacles

Figure 6.6: Performance comparison between a controller learned with explicit
parameterization of the environment and that learned with depth perception.

defined similarly for the obstacles. In this comparison, N = 200 trajectories are
generated in each iteration of the learning algorithm to expand the training set.

We compare the two representations with increasing number of obsta-
cles m, and the results are presented in Figure 6.6. We can see that when
there is only one obstacle in the scene, the results are comparable both in score
and time. However, when there are more obstacles in the scene, 6° has more
dimensions than 6, and the performance of the explicit parameterization de-
clines significantly with respect to the number of objects in the environment.
Moreover, with explicit parameterization, after m increases to four, the score
drops below zero, meaning that in the simulations the character often takes
unnecessary detours and collides with obstacles. On the contrary, the depth
perception model is more robust when the number of objects increases. The
results show that even a perception model with only low resolution (n = 4 in

Equation 6.2) can lead to a better controller in a shorter amount of time.

6.5.3 Adaptive Depth Perception

Next, we analyze how the learning performance scales with increas-
ing resolution of depth perception. First, the experiment is performed on
sparse environments containing a random choice of 1 to 4 obstacles. All ob-

jects are cylinder, whose radii are randomly decided. We compare resolution

108

\

\
—_ =
[N T
o O

30} - —
:o/ 4 /I/
.| £ 100
sy - = &0
N : :é'/ 60 .//I/ /
10 . _ = //
- —¥— Nonadatven=3 | B 40

—®— Non-adaptive, n= 16
—V— Non-adaptive,n =8
Non-adaptive, n = 4

[\
(=]

0:— =O0=Adaptive | | g=———"
! ! ! ! 1 1 1
50 100 150 200 0 50 100 150 200
N (#Trajectories / Iteration) N (#Trajectories / Iteration)

Figure 6.7: We compare depth perception of different resolutions with the
proposed adaptive approach. Non-adaptive depth perception, with n fixed to
4, 8, 16, 32, and 64, is plotted in solid lines, while adaptive depth perception
is plotted in dotted lines. We experiment with three types of environments
with varying density of obstacles, and this figure shows the results of sparse
environments containing a random choice of 1 to 4 obstacles. Results of the
other densities are shown in Figure 6.9 and Figure 6.10 respectively. Three
experiments lead to coherent results. For larger n, computing time increases
drastically, while the score does not always improve due to limited number of
training samples. Predefining a good value of #n is thus difficult, since the best
value varies for different scene complexity and available resources. On the con-
trary, learning with adaptive depth perception has the better scores from high
dimensionality and retains shorter computing time from low dimensionality.

of n = 4,8,16,32, and 64 in Equation 6.2 (when n = 4, the state representation
is the same as 6 in Section 6.5.2), and plot the scores and learning time with
respect to N, the number of trajectories generated in each iteration. The plots
are shown in Figure 6.7. The plots show that the first two increases of the res-
olution greatly improves the learning results, but the increase from n = 16 to
n = 32 only moderately improves the scores with the expense of a noticeable
increase in learning time. The resolution of n = 64, while consuming much
more time for learning, does not improve the scores at all. To sum up, with
limited samples, the scores cannot be infinitely improved with the increase of
resolution, because as the dimensionality increases, the volume of the state
space grows so fast that the available samples become sparse. It is thus very

difficult to predefine an ideal value of n. In this example, when the environ-

109

(a) Different sparsity

i pa:ie g
s B ¥ v <« v‘ /] \ -
B ey e
®lmTalk BN

(b) Different shapes

Figure 6.8: Environments of varied density (a) and containing obstacles of
varied shapes (b).

ment is sparse, the ideal fixed resolution is n = 16, achieving high scores with
short learning time.

However, our adaptive depth perception model outperforms any fixed
resolution: compared to n = 16, higher scores can be obtained in a shorter
amount of time. The result is plotted with dotted red lines in Figure 6.7. More
specifically, the multi-scale state representation used in the experiments are
defined as

6 = (2, d3,..., % azds, .., dY), 6.6)

where dz, and d! are defined as in Equation 6.4 with the subscript ¢ and o de-
note the perception of the goal and obstacles respectively. The value €; controls
the degree of adaptivity in Algorithm 2, and is set to 0.5.

We further extend the experiments by increasing the density of the envi-
ronment. The next two experiments are performed on environments containing

6 to 9 and 11 to 14 obstacles respectively, and the densities are visualized in

110

P e
20} 6

= 7 o
&) I
510 24 ¥
A | Py
@ g3

o = 2

—V— Non-adaptive,n =8

—#— Non-adaptive, n = 64 /./ //
—¥— Non-adaptive, n = 32 ./
—®— Non-adaptive,n =16 1

= O = Adaptive
L | | | | | | |
100 200 300 400 0700 200 300 400
N (#Trajectories / Iteration) N (#Trajectories / Iteration)

Figure 6.9: We compare depth perception of different resolutions with the pro-
posed adaptive approach. This figure shows the result of denser environments
containing a random choice of 6 to 9 obstacles.

Figure 6.8a. When there are 6 to 9 obstacles in the environment, from the plots
in Figure 6.9, a similar conclusion can be drawn: 1. Both n = 16 and n = 32
lead to good scores, but the former is more efficient. 2. Learning with n = 64
is much slower, while the scores are not improved. 3. Our adaptive model
has the best performance, having the good scores of higher resolutions and
the short learning time of the lower resolutions. However, as the environment
becomes even more cluttered, higher resolution of perception is demanded to
distinguish different scenarios. Figure 6.10 shows that when there are 11 to
14 obstacles in the environment, n = 16 is no longer comparable to n = 32,
and the latter now becomes the ideal fixed resolution. Our adaptive model still
obtains the properties of better scores from high resolution and faster learning

from low resolution.

6.5.4 Optimality

In order to evaluate the optimality of our controllers, we apply the A*
search algorithm to compute the optimal score for the same sets of random en-
vironments. We define the heuristic function as the product of the straight line
distance from the current position to the goal and the minimal cost required

to travel one unit distance. In Figure 6.11, we plot in red dotted lines the

111

L

Time (hours)

\
\

—#— Non-adaptive, n = 64
—¥— Non-adaptive, n =32
—®— Non-adaptive, n=16
= O = Adaptive

| | | | 1 | | |
200 300 400 500 200 300 400 500
N (#Trajectories / Iteration) N (#Trajectories / Iteration)

Figure 6.10: We compare depth perception of different resolutions with the
proposed adaptive approach. This figure shows the result of cluttered environ-
ments containing a random choice of 11 to 14 obstacles.

difference between the scores of our controllers (learned with adaptive depth
perception) and the optimal scores from A* search. The differences decrease as
the number of sample trajectories N increases, but when learning with more
cluttered environments more samples are required to achieve the same opti-
mality. However, since it takes less than 2 milliseconds for the controllers to
make a decision in run-time, we can also allow the controller to look ahead
one step into the future for making better decisions. Expanding the policy in
Equation 4.6, we can obtain the one-step look-ahead policy,

7t(s) = argmax (R(s,a) + max Q* (s, a’)) , (6.7)

a

where s’ is the consequent state of taking action a from the currents state s,
and the depth values in s’ are rendered by assuming the environment is tem-
porarily static and simulating the action a. The one-step look-ahead evaluation
is commonly used in animation literature [81, 49, 43, 42]. Making a decision
with the look-ahead policy takes about 15 milliseconds on average, and the
scores are shown in solid black lines in Figure 6.11a. When the environments
are sparsely occupied with obstacles, the scores become very close to the opti-
mal ones; when the environments are cluttered, by looking ahead one step, the
scores can be greatly improved, but more samples are still required for the con-
trollers to converge toward the optimal behaviors. Finally, the simulation time

112

[N
=}

O 1 to 4 obstacles 30E Rzzseeee,

O 6to 9 obstacles B\%\\

(V4]

(=)
N
N

Score Difference to A*
Trrr T T '8' L T
g
Score

N
S
>
B
[y}
S

15k
F o Cylinder \:\ \D

)
=}
o
C/

o

o S 10F 0 Box
0 &\N\/O\g_g 55 A Triangle

. | = T Dheeemmmnnnnnen Dpeeeeeeeeaeees o AEDS Bar

e o S S F + Mixed o

0 100 200 300 400 500 0 o O YAN X

N (#Trajectories / Iteration) Shape in Test Environments
(a) Optimality (b) Generalizability

Figure 6.11: Quantification of the optimality and generalizability of the result-
ing controllers. (a) We analyze the optimality of our controllers by comparing
the results to those generated with the A* search algorithm, and plot the dif-
ference in the scores. The red dotted lines and the black solid lines denote the
controllers without and with one-step look-ahead respectively. (b) We quantify
the generalizability of the controllers trained for different specific shapes by
evaluating them in environments containing other shapes.

for test sets of 10,000 random environments are reported in Figure 6.12. The

A* search produces optimal trajectories, but requires long computation time.

Method 1-4 obstacles 6-9 obstacles 11-14 obstacles
No look-ahead 3.6 min 4.8 min 6.4 min
Look-ahead 19.0 min 26.1 min 38.7 min
A* 732.8 min 1,399.0 min 2,583.4 min

Figure 6.12: Comparison of running-time for simulating 10,000 trajectories in
randomly generated environments.

6.5.5 Generalizability

An advantage of using depth perception is that the learned controllers
can be directly applied to environments containing arbitrarily-shaped objects,
and no preprocessing, such as re-parameterization of the environment, is re-
quired. To quantify this property, we generate several controllers, each trained

for obstacles of a specific shape, and evaluate the controllers in environments

113

containing obstacles of other shapes. In this experiment, we start with cylinders
that are used throughout the previous sections, and then change the shapes into
boxes, triangles and bars, as shown in Figure 6.8b. To maintain the density of
the environment, the volume of each obstacle is preserved when changed into
other shapes. The evaluation results are shown in Figure 6.11b. In general,
bars and triangles produce more difficult scenes, because they tend to create
wider blocks and narrower passages, while cylinders produce the simplest en-
vironments. Although the controller trained for cylinders can still respond to
other shapes with positive expected returns, the performance varies a lot with
respect to different shapes. On the contrary, the controller trained for bars has
the best scores in all shapes. Simpler shapes tend to lead to less challenging
environments, such that controllers are exposed to only few samples to learn
difficult situations. This explains why the controller trained with bars even
outperforms those that are trained with the same shapes used in the test set.
This also explains why other controllers have much worse performance in the
environment of bars.

Finally, we mix all four shapes to learn a controller, whose scores are
plotted in dotted blue line in Figure 6.11b. It has good scores in all tests,
even though when compared with the controller trained for bars, it has worse
performance in the environments containing only bars. This is due to the fact
that the use of all shapes make difficult situations appear less often in the
sample set, while the test set of only bars involve more difficult situations. We
conclude that using depth perception, the learned controllers can respond to
novel shapes, but with limited capability, as the controllers can only infer the
situations from experience, i.e., input set of transition tuples of the learning
algorithm. In the end, we demonstrate how the controllers trained for bars

cope with environments containing arbitrarily-shaped objects in Figure 6.13.

6.5.6 Survival Game

In the end, we use a game-like scenario to highlight the advantage of
reinforcement learning over path search techniques in real-time applications.
We build a closed environment where all the obstacles move with constant
speed in the direction of the character and the only goal of the character is to

survive by not colliding with any obstacles. Since the goal is not a concrete

114

Figure 6.13: We apply the controllers trained for bars in the environments
containing arbitrarily-shaped objects. We load in a teapot mesh and ask a user
to draw arbitrary obstacles. No collision detection nor re-parametrization of
the environment is required, but the controllers can navigate the characters
through the obstacles to the goal.

state or position, it is difficult to define a heuristic for path search algorithms
like A*. In addition, applying search algorithms in real-time requires collision
detection to be performed for each expansion of the search trees, which intro-
duces considerable computation overhead. On the contrary, the scenario can be
easily defined in a RL framework: in the learning stage, the character is given
a deadly penalty for colliding with obstacles or walls, and a small reward for
every surviving moment. This is all that is needed for the character to learn
a surviving strategy automatically by interacting with the environment. At
run-time, no collision detection nor re-parameterization of the environment is
required, but the controller can make decisions instantaneously according to
the character’s visual perception. Examples of the learned strategy are shown
in Figure 6.14. In addition, using the resulting controller, the character can

avoid obstacles of arbitrary shape that are drawn interactively by a user.

6.6 Conclusions

We have proposed a method that facilitates the application of reinforce-
ment learning to character control. Traditional state models are manually made

up with explicit descriptions of the environment. On the contrary, our state

115

Figure 6.14: Visualization of the learned strategy in the survival game, where
all the obstacles track the character and the only goal is to survive by not
colliding with any obstacles or walls. The character learns that it is important
to quickly move outward through the obstacles, and then circle around the
obstacles while avoiding being trapped in a corner. By successfully doing so,
the character can continually survive.

model lets the character perceive the environment directly. In order to use a
generic high-dimensional sensor like depth vision, it is critical to adapt the di-
mensionality of the state space to the scene complexity; without adaptation, it
is challenging to avoid being cursed by dimensionality. We make such adap-
tation possible by proposing a hierarchical state model and a novel regression
algorithm. Our hierarchical state model replaces a single state definition of
tfixed dimensionality. Our regression algorithm works with the hierarchical
state model to adapt the dimensionality to the scene complexity. We demon-
strate that our approach based on adaptive depth perception learns a better
controller in a shorter amount of time. The learned controller can be directly
applied to environments containing objects of novel shapes, and there is no
need for re-parameterizations.

We see numerous directions to further improve our work. First of all,
the character only perceives and generalizes the current situation but does not
memorize its history. If the environment consists of complex dead ends like in a
maze, the character may get trapped and may keep making the same mistakes.
Incorporating short-term or long-term memory into the system can resolve this
problem. Also, maintaining global information like a scene map could help the
character to make better decisions [56, 32, 5]. Another alternative is to model
the problem with partially observable MDP (POMDP).

116

Currently, our motion graph only includes walking motions, because we
only capture one-dimensional depth vision from the camera mounted on the
character. In order to let the character perform actions like collision-free jump-
ing or ducking, however, two-dimensional depth vision is required, which in-
creases the potential number of dimensions quadratically. Although we adjust
the dimensionality of state space adaptively, it will be necessary to draw signifi-
cantly more samples during learning and require more memory to differentiate
complex situations like the width and depth of gaps to jump over. However,
we would like to see our work as a first step to explore further research of
using adaptive state models in reinforcement learning.

This chapter is based on “Learning Motion Controllers with Adaptive
Depth Perception”, Wan-Yen Lo, Claude Knaus, and Matthias Zwicker, cur-
rently under review.

o» Chapter 7 e

Conclusions

“We are at the very beginning of time for the human race. It is not unreasonable
that we grapple with problems. But there are tens of thousands of years in the
future. Our responsibility is to do what we can, learn what we can, improve the

solutions, and pass them on."

What Do You Care What Other People Think?

RicHARD FEYNMAN

In this dissertation, we seek to bridge the gap between real-time mo-
tion control and (near) optimal motion synthesis. Both are critical for making
a lifelike avatar: the former allows instant responses to user input and the
latter ensures realism of the motion. We investigate two most popular data-
drive approaches, which make use of motion capture data by piecing together
short motion fragments, and point of the inevitable of trading optimality for
efficiency. We propose novel algorithms to improve the efficiency for near-
optimal motion synthesis, making the data-driven approaches more applicable
for practical applications.

We first investigate search algorithms, since the motion capture data is
generally organized with a graph structure and the problem of the motion syn-
thesis is cast as a search problem. Among all the search algorithms, A* search
is the most favorable, for it is optimal and optimally efficient. However, the
search complexity is still exponential to the graph size and the length of the
solution, so it is challenging to apply search algorithms for optimal motion syn-
thesis when interactive performance is demanded. To make search algorithms
more applicable for interactive applications, we develop a novel method to al-
low two searches performed simultaneously from both ends of the solution.
By cutting the search depth in half, our bidirectional search strategy can lead

117

118

to a significant performance improvement. This is orthogonal to many search
algorithms, so our approach can be applied in existing frameworks to enhance
the performance.

We then explore reinforcement learning, which avoids the trade-off be-
tween optimality and efficiency by means of pre-planning. Reinforcement
learning algorithms allow us to learn in a pre-process the optimal value func-
tion, which returns the expected future rewards of every possible state. A
motion controller’s ability to make optimal decisions then relies on how well
the value function is approximated. We introduce a tree-based regression al-
gorithm to adaptively approximate the value function, which is more efficient
and robust than previous strategies. We also extend the existing frameworks
to include parameterized motions and interpolation for precise motion control.
Our approach generate natural animation in real-time while avoiding excessive
sampling of the continuous space of motions.

Previous reinforcement learning frameworks require the state space to
be carefully designed to limit the dimensionality. This process is tedious, and
a small change in the state representation requires the learning process to be
repeated. We propose to skip this design phase by letting the character directly
“see” the surroundings. We make this possible by introducing a hierarchical
state model and a novel regression algorithm to avoid the notorious curse of di-
mensionality. We equip the character with 1D panoramic depth vision, and our
approach allow the resolution of visual percepts to be adapted automatically
to the scene complexity. We demonstrate that our controllers allow a character
to navigate or survive in environments containing arbitrarily shaped obstacles,

which is difficult to achieve with previous reinforcement learning frameworks.

7.1 Future Work

In this dissertation, we use and improve several machine learning and
artificial intelligence techniques. Although we mainly focus on motion plan-
ning, we see the opportunities of applying our algorithms in other areas for
future work:

119

Bidirectional Search. For problems that are solvable with conventional search
algorithms, our bidirectional search framework may be used to improve the
search efficiency if a mapping can be found between the state space and the
Euclidean space. The mapping is essential as we define a cut and perform
dynamic cut adjustment in the Euclidean space to balance two searches from

opposite directions.

Hierarchical State Model. Our hierarchical state model can be used to replace
a single state definition of fixed dimensionality, and our regression algorithm
can automatically select a suitable resolution according to the complexity of
the problem. It is critical, however, to define a meaningful hierarchy from the
original state representation. The agent should be able to distinguish between
favorable and hostile states with low resolution, and to improve decisions with
an increase in resolution. Given an ill-defined hierarchy, the regression algo-
rithm will use the finest resolution all the time, introducing additional over-

heads while not improving the learning efficiency.
We further list a few opportunities for future work in computer animation.

Hierarchical Search. We have shown that by cutting the search depth in half,
the search performance can be dramatically improved. However, with limited
computing resources, the length of motions that can be generated at interac-
tive rates is still limited. This could be addressed with a hierarchical search
algorithm, or by splitting the search space into more than two parts. The main
challenge is to design a mechanism to merge several partial solutions efficiently

without sacrificing the optimality.

More General RL Framework. In the last decade, many advances have been
made to improve the applicability of reinforcement learning in character con-
trol: continuous state space, continuous action space, and automatically learned
reward functions from given examples. We also made contributions by intro-
ducing a more general state model. We would like to see the action space be
generalized with a similar concept, so that a bigger, continuous action space

can be used to enable fluid and precise control. Finally, it is challenging to

120

allow both state and action space to be continuous. To avoid the curse of di-

mensionality, a more adaptive algorithm is inevitable.

Bibliography

[1] Okan Arikan and D. A. Forsyth. Interactive motion generation from ex-
amples. ACM Trans. Graph., 21:483-490, July 2002.

[2] Okan Arikan, David A. Forsyth, and James F. O’Brien. Motion synthesis
from annotations. ACM Trans. Graph., 22:402-408, July 2003.

[3] Jackie Assa, Yaron Caspi, and Daniel Cohen-Or. Action synopsis: pose
selection and illustration. ACM Trans. Graph., 24:667-676, July 2005.

[4] Leemon C. Baird. Residual algorithms: Reinforcement learning with func-
tion approximation. In ICML, pages 30-37, 1995.

[5] Bram Bakker. Reinforcement learning with long short-term memory. In
NIPS, pages 1475-1482, 2001.

[6] Richard Ernest Bellman. Dynamic Programming. Courier Dover Publica-
tions, 1957.

[7] Jinxiang Chai and Jessica K. Hodgins. Performance animation from low-
dimensional control signals. ACM Trans. Graph., 24:686—696, July 2005.

[8] Jinxiang Chai and Jessica K. Hodgins. Constraint-based motion optimiza-
tion using a statistical dynamic model. ACM Trans. Graph., 26, July 2007.

[9] Joel E. Chestnutt, Yutaka Takaoka, Keisuke Suga, Koichi Nishiwaki, James
Kuffner, and Satoshi Kagami. Biped navigation in rough environments
using on-board sensing. In IROS, pages 3543-3548, 2009.

[10] Min Gyu Choi, Jehee Lee, and Sung Yong Shin. Planning biped locomotion
using motion capture data and probabilistic roadmaps. ACM Trans. Graph.,
22:182-203, April 2003.

[11] Myung Geol Choi, Manmyung Kim, Kyunglyul Hyun, and Jehee Lee. De-
formable motion: Squeezing into cluttered environments. Comput. Graph.
Forum, 30(2):445-453, 2011.

121

122

[12] Seth Cooper, Aaron Hertzmann, and Zoran Popovi¢. Active learning for
real-time motion controllers. In ACM SIGGRAPH 2007 papers, SSIGGRAPH
‘07, New York, NY, USA, 2007. ACM.

[13] Marco da Silva, Yeuhi Abe, and Jovan Popovi¢. Interactive simulation
of stylized human locomotion. ACM Trans. Graph., 27:82:1-82:10, August
2008.

[14] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6:503-556,
2005.

[15] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode
reinforcement learning. J. Mach. Learn. Res., 6:503-556, December 2005.

[16] Volker Gaede and Oliver Giinther. Multidimensional access methods.
ACM Computing Surveys, 30(2):170-231, 1998.

[17] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine Learning, 63(1):3—42, 2006.

[18] Michael Gleicher. Motion path editing. In Proceedings of the 2001 symposium
on Interactive 3D graphics, 13D '01, pages 195-202, New York, NY, USA,
2001. ACM.

[19] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popovié.
Style-based inverse kinematics. ACM Trans. Graph., 23:522-531, August
2004.

[20] Rachel Heck and Michael Gleicher. Parametric motion graphs. In Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and games, 13D "07,
pages 129-136, New York, NY, USA, 2007. ACM.

[21] Kenneth E. Hoff, III, John Keyser, Ming Lin, Dinesh Manocha, and Tim
Culver. Fast computation of generalized voronoi diagrams using graphics
hardware. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, SIGGRAPH "99, pages 277-286, New York, NY,
USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[22] Leslie Ikemoto, Okan Arikan, and David Forsyth. Learning to move au-
tonomously in a hostile world. In ACM SIGGRAPH 2005 Sketches, SIG-
GRAPH '05, New York, NY, USA, 2005. ACM.

[23] Sébastien Jodogne and Justus H. Piater. Interactive learning of mappings
from visual percepts to actions. In Proceedings of the 22nd international
conference on Machine learning, ICML ’05, pages 393—400, New York, NY,
USA, 2005. ACM.

123

[24] Sébastien Jodogne and Justus H. Piater. Closed-loop learning of visual
control policies. J. Artif. Int. Res., 28:349-391, March 2007.

[25] Michael Patrick Johnson, Andrew Wilson, Bruce Blumberg, Christopher
Kline, and Aaron Bobick. Sympathetic interfaces: using a plush toy to di-
rect synthetic characters. In Proceedings of the SIGCHI conference on Human
factors in computing systems: the CHI is the limit, CHI 99, pages 152-158,
New York, NY, USA, 1999. ACM.

[26] James]J. Kuffner Jr. and Steven M. LaValle. Rrt-connect: An efficient ap-
proach to single-query path planning. In ICRA, pages 995-1001, 2000.

[27] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Rein-
forcement learning: A survey. |. Artif. Intell. Res. (JAIR), 4:237-285, 1996.

[28] Hermann Kaindl and Gerhard Kainz. Bidirectional heuristic search recon-
sidered. Journal of Artificial Intelligence Research, 7:283-317, 1997.

[29] Lucas Kovar and Michael Gleicher. Flexible automatic motion blend-
ing with registration curves. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA ‘03, pages
214-224, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics As-
sociation.

[30] Lucas Kovar and Michael Gleicher. Automated extraction and parame-
terization of motions in large data sets. ACM Trans. Graph., 23:559-568,
August 2004.

[31] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. ACM
Trans. Graph., 21:473-482, July 2002.

[32] James J. Kuffner and Jean-Claude Latombe. Fast synthetic vision, memory,
and learning models for virtual humans. In CA, pages 118-127, 1999.

[33] James B.H. Kwa. Bs*: an admissible bidirectional staged heuristic search
algorithm. Artif. Intell., 38(1):95-109, 1989.

[34] Manfred Lau, Ziv Bar-Joseph, and James Kuffner. Modeling spatial and
temporal variation in motion data. ACM Trans. Graph., 28:171:1-171:10,
December 2009.

[35] Manfred Lau and James]. Kuffner. Behavior planning for character ani-
mation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation, SCA '05, pages 271-280, New York, NY, USA, 2005.
ACM.

124

[36] Manfred Lau and James J. Kuffner. Precomputed search trees: planning
for interactive goal-driven animation. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA '06, pages
299-308, Aire-la-Ville, Switzerland, 2006. Eurographics Association.

[37] Steven M. LaValle. Planning Algorithms. Cambridge University Press, New
York, NY, USA, 2006.

[38] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and
Nancy S. Pollard. Interactive control of avatars animated with human
motion data. ACM Trans. Graph., 21:491-500, July 2002.

[39] Jehee Lee and Kang Hoon Lee. Precomputing avatar behavior from human
motion data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, SCA '04, pages 79-87, Aire-la-Ville, Switzer-
land, Switzerland, 2004. Eurographics Association.

[40] Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive mo-
tion editing for human-like figures. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH "99, pages
3948, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing
Co.

[41] Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. Motion patches: build-
ing blocks for virtual environments annotated with motion data. ACM
Trans. Graph., 25:898-906, July 2006.

[42] Seong Jae Lee and Zoran Popovié. Learning behavior styles with inverse
reinforcement learning. ACM Trans. Graph., 29:122:1-122:7, July 2010.

[43] Yongjoon Lee, Seong Jae Lee, and Zoran Popovi¢. Compact character
controllers. ACM Trans. Graph., 28:169:1-169:8, December 2009.

[44] Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popovié, and Zo-
ran Popovi¢. Motion fields for interactive character locomotion. ACM
Trans. Graph., 29:138:1-138:8, December 2010.

[45] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. ACM Trans.
Graph., 25:579-588, July 2006.

[46] Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popovié. Space-
time planning with parameterized locomotion controllers. ACM Trans.
Graph., 30:23:1-23:11, May 2011.

[47] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. Ara*: Any-
time a* with provable bounds on sub-optimality. In NIPS, 2003.

125

[48] C. Karen Liu, Aaron Hertzmann, and Zoran Popovié. Learning physics-
based motion style with nonlinear inverse optimization. ACM Trans.
Graph., 24:1071-1081, July 2005.

[49] Wan-Yen Lo and Matthias Zwicker. Real-time planning for parameterized
human motion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’08, pages 29-38. Eurographics
Association, 2008.

[50] James McCann and Nancy Pollard. Responsive characters from motion
fragments. ACM Trans. Graph., 26, July 2007.

[51] Philipp Michel, Joel Chestnutt, James Kuffner, and Takeo Kanade. Vision-
guided humanoid footstep planning for dynamic environments. In in Proc.
of the IEEE-RAS/RS] Int. Conf. on Humanoid Robots (HumanoidsS05), pages
13-18, 2005.

[52] Jetf Michels, Ashutosh Saxena, and Andrew Y. Ng. High speed obstacle
avoidance using monocular vision and reinforcement learning. In Proceed-

ings of the 22nd international conference on Machine learning, ICML ‘05, pages
593-600, New York, NY, USA, 2005. ACM.

[53] Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai. Interactive generation of
human animation with deformable motion models. ACM Trans. Graph.,
29:9:1-9:12, December 2009.

[54] Uldarico Muico, Yongjoon Lee, Jovan Popovi¢, and Zoran Popovié.
Contact-aware nonlinear control of dynamic characters. ACM Trans.
Graph., 28:81:1-81:9, July 2009.

[55] Tomohiko Mukai and Shigeru Kuriyama. Geostatistical motion interpola-
tion. ACM Trans. Graph., 24:1062-1070, July 2005.

[56] Hansrudi Noser, Olivier Renault, Daniel Thalmann, and Nadia Magnenat-
Thalmann. Navigation for digital actors based on synthetic vision, mem-
ory, and learning. Computers & Graphics, 19(1):7-19, 1995.

[57] Naoki Numaguchi, Atsushi Nakazawa, Takaaki Shiratori, and Jessica K.
Hodgins. A puppet interface for retrieval of motion capture data. In Pro-
ceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA "11, pages 157-166, New York, NY, USA, 2011. ACM.

[58] Jan Ondfej, Julien Pettré, Anne-Héléne Olivier, and Stéphane Donikian.
A synthetic-vision based steering approach for crowd simulation. ACM
Trans. Graph., 29:123:1-123:9, July 2010.

126

[59] Dirk Ormoneit and Saunak Sen. Kernel-based reinforcement learning.
Mach. Learn., 49:161-178, November 2002.

[60] Masaki Oshita. Motion control with strokes. Journal of Visualization and
Computer Animation, 16(3-4):237-244, 2005.

[61] Christopher Peters and Carol O’Sullivan. Bottom-up visual attention for
virtual human animation. In CASA, pages 111-117, 2003.

[62] Ira Pohl. Bi-directional search. Machine Intelligence, 6:127-140, 1971.

[63] Katherine Pullen and Christoph Bregler. Motion capture assisted anima-
tion: texturing and synthesis. ACM Trans. Graph., 21:501-508, July 2002.

[64] Liu Ren, Gregory Shakhnarovich, Jessica K. Hodgins, Hanspeter Pfister,
and Paul Viola. Learning silhouette features for control of human motion.
ACM Trans. Graph., 24:1303-1331, October 2005.

[65] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs and ad-
verbs: Multidimensional motion interpolation. IEEE Computer Graphics
and Applications, 18(5):32-40, 1998.

[66] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[67] Alla Safonova and Jessica K. Hodgins. Analyzing the physical correct-
ness of interpolated human motion. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA '05, pages
171-180, New York, NY, USA, 2005. ACM.

[68] Alla Safonova and Jessica K. Hodgins. Construction and optimal search
of interpolated motion graphs. ACM Trans. Graph., 26, July 2007.

[69] Arno Schodl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video
textures. In Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, SIGGRAPH 00, pages 489498, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[70] Ari Shapiro, Marcelo Kallmann, and Petros Faloutsos. Interactive motion
correction and object manipulation. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games, 13D "07, pages 137-144, New York, NY,
USA, 2007. ACM.

[71] Hyun Joon Shin and Hyun Seok Oh. Fat graphs: constructing an inter-
active character with continuous controls. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation, SCA 06, pages
291-298, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics As-
sociation.

127

[72] Takaaki Shiratori and Jessica K. Hodgins. Accelerometer-based user in-
terfaces for the control of a physically simulated character. ACM Trans.
Graph., 27:123:1-123:9, December 2008.

[73] Hubert P. H. Shum, Taku Komura, and Shuntaro Yamazaki. Simulating
interactions of avatars in high dimensional state space. In Proceedings of
the 2008 symposium on Interactive 3D graphics and games, 13D 08, pages 131-
138, New York, NY, USA, 2008. ACM.

[74] Ronit Slyper and Jessica K. Hodgins. Action capture with accelerome-
ters. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ‘08, pages 193-199, Aire-la-Ville, Switzerland,
Switzerland, 2008. Eurographics Association.

[75] Kwang Won Sok, Manmyung Kim, and Jehee Lee. Simulating biped be-
haviors from human motion data. ACM Trans. Graph., 26, July 2007.

[76] Nathan Sprague, Dana Ballard, and Al Robinson. Modeling embodied
visual behaviors. ACM Trans. Appl. Percept., 4, July 2007.

[77] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[78] Matthias Teschner, Bruno Heidelberger, Matthias Miiller, Danat Pomer-
anets, and Markus Gross. Optimized spatial hashing for collision detec-
tion of deformable objects. In Proc. VMV, pages 47-54, 2003.

[79] Matthew Thorne, David Burke, and Michiel van de Panne. Motion doo-
dles: an interface for sketching character motion. In ACM SIGGRAPH
2006 Courses, SIGGRAPH "06, New York, NY, USA, 2006. ACM.

[80] Deepak Tolani and Norman I. Badler. Real-time inverse kinematics of the
human arm. Presence, 5(4):393-401, 1996.

[81] Adrien Treuille, Yongjoon Lee, and Zoran Popovi¢. Near-optimal charac-
ter animation with continuous control. ACM Trans. Graph., 26, July 2007.

[82] Kevin Wampler, Erik Andersen, Evan Herbst, Yongjoon Lee, and Zoran
Popovi¢. Character animation in two-player adversarial games. ACM
Trans. Graph., 29:26:1-26:13, July 2010.

[83] Jack M. Wang, David]. Fleet, and Aaron Hertzmann. Gaussian process
dynamical models for human motion. I[EEE Trans. Pattern Anal. Mach.
Intell., 30(2):283-298, 2008.

128

[84] Jing Wang and Bobby Bodenheimer. Computing the duration of motion
transitions: an empirical approach. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA '04, pages
335-344, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics As-
sociation.

[85] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learn-
ing, 8(3-4):279-292, 1992.

[86] Douglas J. Wiley and James K. Hahn. Interpolation synthesis of articulated
tigure motion. IEEE Computer Graphics and Applications, 17(6):39-45, 1997.

[87] Andrew Witkin and Zoran Popovic. Motion warping. In Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques,
SIGGRAPH 95, pages 105-108, New York, NY, USA, 1995. ACM.

[88] Yuting Ye and C. Karen Liu. Optimal feedback control for character an-
imation using an abstract model. ACM Trans. Graph., 29:74:1-74:9, July
2010.

[89] Yuting Ye and C. Karen Liu. Synthesis of responsive motion using a dy-
namic model. Comput. Graph. Forum, 29(2):555-562, 2010.

[90] KangKang Yin and Dinesh K. Pai. Footsee: an interactive animation sys-
tem. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium
on Computer animation, SCA ’03, pages 329-338, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[91] Wataru Yoshizaki, Yuta Sugiura, Albert C. Chiou, Sunao Hashimoto,
Masahiko Inami, Takeo Igarashi, Yoshiaki Akazawa, Katsuaki Kawachi,
Satoshi Kagami, and Masaaki Mochimaru. An actuated physical pup-
pet as an input device for controlling a digital manikin. In Proceedings of
the 2011 annual conference on Human factors in computing systems, CHI "11,
pages 637-646, New York, NY, USA, 2011. ACM.

[92] Liming Zhao, Aline Normoyle, Sanjeev Khanna, and Alla Safonova. Au-
tomatic construction of a minimum size motion graph. In Proceedings of
the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’09, pages 27-35, New York, NY, USA, 2009. ACM.

[93] Liming Zhao and Alla Safonova. Achieving good connectivity in motion
graphs. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ‘08, pages 127-136, Aire-la-Ville, Switzerland,
Switzerland, 2008. Eurographics Association.

129

[94] Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. Dy-
namic response for motion capture animation. ACM Trans. Graph., 24:697—
701, July 2005.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Related Work
	Reassembling Motion Fragments
	Synthesizing Novel Poses
	Motion Control Interfaces

	Contribution
	Dissertation Overview

	Search with Motion Graphs
	Motion Representation
	Motion Graphs
	Interpolated Motion Graphs
	Well-connected Motion Graphs

	Problem Formulation
	Search Algorithms
	Breadth-first Search & Depth-first Search
	Greedy Best-first Search
	A* Search
	Randomized Search

	Pruning Repeated States
	Precomputed Search Trees
	Precomputed Search Graphs

	Summary

	Bidirectional Search with Motion Graphs
	Contributions
	Bidirectional Search
	Overview
	Dynamic Cut Adjustment
	Merging Two Search Trees

	Intuitive Motion Control with Strokes
	Input Stroke Analysis
	Bidirectional A* Search
	Optimality Analysis

	Results
	Performance
	Control
	Scalability

	Conclusions

	Reinforcement Learning
	Markov Decision Process
	Policy Iteration
	Value Iteration

	Reinforcement Learning
	Exploration
	Model-based Learning
	Model-free Learning

	Learning Motion Controllers
	Problem Formulation
	Continuous State Space
	Summary

	Real-time Planning with Parametric Motion
	Contributions
	Learning Motion Controllers
	Kernel-based Reinforcement Learning
	Tree-based Fitted Iteration Algorithm

	Incorporating Parameterized Motion Groups
	Results
	Motion Planning
	Extra-trees Regression
	Parametric Synthesis
	Near-optimal Control

	Conclusions

	Learning with Adaptive Depth Perception
	Contributions
	State Representation
	Hierarchical State Model
	Adaptive Learning
	Results
	Experiment Setup
	Depth Perception
	Adaptive Depth Perception
	Optimality
	Generalizability
	Survival Game

	Conclusions

	Conclusions
	Future Work

	Bibliography

