
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Experiences with 100Gbps Network Applications

Permalink
https://escholarship.org/uc/item/7kn843cs

Author
Balman, Mehmet

Publication Date
2012-06-18

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kn843cs
https://escholarship.org
http://www.cdlib.org/

Experiences with 100Gbps Network Applications∗

Mehmet Balman, Eric Pouyoul, Yushu Yao, E. Wes Bethel
Burlen Loring, Prabhat, John Shalf, Alex Sim, and Brian L. Tierney

Lawrence Berkeley National Laboratory

One Cyclotron Road

Berkeley, CA, 94720, USA

Abstract

100Gbps networking has finally arrived, and many research and educational in-

stitutions have begun to deploy 100Gbps routers and services. ESnet and Internet2

worked together to make 100Gbps networks available to researchers at the Super-

computing 2011 conference in Seattle Washington. In this paper, we describe two

of the first applications to take advantage of this network. We demonstrate a visu-

alization application that enables remotely located scientists to gain insights from

large datasets. We also demonstrate climate data movement and analysis over the

100Gbps network. We describe a number of application design issues and host

tuning strategies necessary for enabling applications to scale to 100Gbps rates.

∗DISCLAIMER:This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct
information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents
of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof or the Regents of the University of California.

1

1 Introduction

Modern scientific simulations and experiments produce an unprecedented amount of
data. End-to-end infrastructure is required to store, transfer and analyze these datasets
to gain scientific insights. While there has been a lot of progress in computational hard-
ware, distributed applications have been hampered by the lack of high-speed networks.
Today, we have finally crossed the barrier of 100Gbps networking; these networks are
increasingly becoming available to researchers, opening up new avenues for tackling
large data challenges.

When we made a similar leap from 1Gbps to 10Gbps about 10 years ago, dis-
tributed applications did not automatically run 10 times faster just because there was
more bandwidth available. The same is true today with the leap for 10Gbps to 100Gbps
networks. One needs to pay close attention to application design and host tuning in or-
der to be able to take advantage of the higher network capacity. Some of these issues
are similar to those of 10 years ago, such as I/O pipelining and TCP tuning, but some
are different due to the fact that we have many more CPU cores involved.

ESnet and Internet2, the two largest research and education network providers in
the USA, worked together to make 100Gbps networks available to researchers at the
Supercomputing 2011 (SC11) conference in Seattle Washington, November 2011. This
network, shown in Figure 1, included a 100Gbps connection between National Energy
Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Lab-
oratory (LBNL) in Oakland, CA, Argonne National Laboratory (ANL) near Chicago,
IL, and Oak Ridge National Laboratory (ORNL) in Tennessee.

STAR

SC11

AOFA
NERSC

SALT

ORNL

SUNN

ANL

Router site
Optical regen site

Figure 1: 100Gbps Network for Supercomputing 2011

In this paper, we describe two of the first applications to take advantage of this
network. The first application demonstrates real-time streaming and visualization of a

2

600 Gigabyte cosmology dataset. We illustrate how enhanced network capability en-
ables remotely located scientists to gain insights from large data volumes. The second
application showcases data distribution for climate science. We demonstrate how sci-
entific data movement and analysis between geographically disparate supercomputing
facilities can benefit from high-bandwidth networks.

The paper is organized as follows. First, we briefly review background informa-
tion, and provide details about our testbed configuration for the SC11 demonstrations.
Next, we provide technical information and optimization strategies utilized in the visu-
alization demo. We then describe a climate data movement application and introduce
a data streaming tool for high-bandwidth networks. We describe how the application
design needed to be modified to scale to 100Gbps. We then discuss a number of Linux
host tuning strategies needed to achieve these rates. Finally, we state lessons learned
in end-system configuration and application design to fully utilize underlying network
capacity and conclude with brief evaluation and future directions in use of 100Gbps
networks.

2 Background

2.1 The Need for 100Gbps Networks

Modern science is increasingly data-driven and collaborative in nature. Large-scale
simulations and instruments produce petabytes of data, which is subsequently ana-
lyzed by tens to thousands of geographically dispersed scientists. Although it might
seem logical and efficient to collocate the analysis resources with the source of the data
(instrument or a computational cluster), this is not the likely scenario. Distributed so-
lutions – in which components are scattered geographically – are much more common
at this scale, for a variety of reasons, and the largest collaborations are most likely to
depend on distributed architectures.

The Large Hadron Collider1 (LHC), the most well-known high-energy physics col-
laboration, was a driving force in the deployment of high bandwidth connections in
the research and education world. Early on, the LHC community understood the chal-
lenges presented by their extraordinary instrument in terms of data generation, distri-
bution, and analysis.

Many other research disciplines are now facing the same challenges. The cost
of genomic sequencing is falling dramatically, for example, and the volume of data
produced by sequencers is rising exponentially. In climate science, researchers must

1The Large Hadron Collider http://lhc.web.cern.ch/lhc/

3

analyze observational and simulation data sets located at facilities around the world.
Climate data is expected to exceed 100 exabytes by 2020 [5]. The need for productive
access to such data led to the development of the Earth System Grid2 (ESG) [10], a
global workflow infrastructure giving climate scientists access to data sets housed at
modeling centers on multiple continents, including North America, Europe, Asia, and
Australia.

Efficient tools are necessary to move vast amounts of scientific data over high-
bandwidth networks, for such state-of-the-art collaborations. We evaluate climate data
distribution over high-latency high-bandwidth networks, and state the necessary steps
to scale-up climate data movement to 100Gbps networks. We have developed a new
data streaming tool that provides dynamic data channel management and on-the-fly
data pipelines for fast and efficient data access. Data is treated as first-class citizen for
the entire spectrum of file sizes, without compromising on optimum usage of network
bandwidth. In our demonstration, we successfully staged real-world data from the
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)
Phase 3, Coupled Model Intercomparison Project3 (CMIP-3) into computing nodes
across the country at ANL and ORNL from NERSC data storage over the 100Gbps
network in real-time.

2.2 Visualization over 100Gbps

Modern simulations produce massive amounts of datasets that need further analysis
and visualization. Often, these datasets cannot be moved from the machines that the
simulations are conducted on. One has to resort to in situ analysis (i.e. conduct anal-
ysis while the simulation is running), or remote rendering (i.e. run a client on a local
workstation, and render the data at the supercomputing center). While these modes of
operation are often desirable, a class of researchers would much rather prefer to stream
the datasets to their local workstations or facilities, and conduct a broad range of vi-
sualization and analysis tasks locally. With the availability of the 100Gbps network,
this mode of analysis is now feasible. To justify this claim, we demonstrate real-time
streaming of a large multi-Terabyte sized dataset in a few minutes from DOE’s pro-
duction supercomputing facility NERSC, to four commodity workstations at SC11 in
Seattle. For illustration purposes, we then demonstrate real-time parallel visualization
of the same dataset.

2Earth System Grid http://www.earthsystemgrid.org
3CMIP3 Multi-Model Dataset Archive at PCMDI http://www-pcmdi.llnl.gov/ipcc/

4

Figure 2: SC11 100Gbps Demo Configuration

3 100Gbps Test Environment

We performed our tests using a wide array of resources from DOE’s Advanced Network
Initiative 4 (ANI) network and testbed5, and the DOE Magellan Project [17]. The
ANI Network is a prototype 100Gbps network connecting DOE’s three Supercomputer
centers. These three centers include National Energy Research Scientific Computing
Center6 (NERSC), Argonne Leadership Class Facility7, and Oak Ridge Leadership
Class Facility8. The ANI Testbed includes high-speed hosts at both NERSC and ALCF.
The Magellan project included large clusters at both NERSC and ALCF. 16 hosts at
NERSC were designated as I/O nodes to be connected to the 100Gbps ANI network.

In the annual Supercomputing conference (SC11) held in Seattle, WA, ESnet9 and
Internet210 worked together to bring a 100Gbps link from Seattle to Salt Lake City,
where it was connected to ESnet’s ANI network, as shown in Figure 1.

We utilized 16 hosts at NERSC to send data, each with 2 quad-core Intel Nehalem
processors and 48 GB of system memory. In addition to regular disk-based GPFS file

4Advanced Network Initiative http://www.es.net/RandD/advanced-networking-initiative/
5ANI Testbed http://sites.google.com/a/lbl.gov/ani-testbed/
6National Energy Research Center http://www.nersc.gov
7Argonne Leadership Class Facility http://www.alcf.anl.gov
8Oak Ridge Leadership Class Facility http://www.olcf.ornl.gov
9Energy Sciences Network http://www.es.net

10Internet2 http://www.internet2.edu

5

system, these hosts are also connected via Infiniband to a Flash-based file system for
sustained I/O performance during the demonstration. The complete system, including
the hosts and the GPFS11 filesystem can sustain an aggregated 16 GBytes/second read
performance. Each host is equipped with a Chelsio 10Gbps NIC which is connected to
the NERSC Alcatel-Lucent router.

We utilized 12 hosts at OLCF to receive data, each with 24GB of RAM and a
Myricom 10GE NIC. These were all connected to a 100Gbps Juniper router. We used
14 hosts at ALCF to receive data, each with 48GB of RAM and a Mellanox 10GE
NIC. These hosts were connected to a 100Gbps Brocade router. Each host at ALCF
and OLCF had 2 quad-core Intel Nehalem processors. We measured a round-trip time
(RTT) of 50ms between NERSC and ALCF, and 64ms between NERSC and OLCF.
We used four hosts in the SC11 LBL booth, each with two 8-core AMD processors and
64 GB of memory. Each host is equipped with Myricom 10Gbps network adaptors,
one dual port, and two single-port,connected to a 100Gbps Alcatel-Lucent router at the
booth. Figure 2 shows the hosts that were used for the two 100Gbps applications at
SC11.

4 Visualizing the Universe at
100Gbps

Computational cosmologists routinely conduct large scale simulations to test theories
of formation (and evolution) of the universe. Ensembles of calculations with various
parametrizations of dark energy, for instance, are conducted on thousands of com-
putational cores at supercomputing centers. The resulting datasets are visualized to
understand large scale structure formation, and analyzed to check if the simulations
are able to reproduce known observational statistics. In this demonstration, we used
a modern cosmological dataset produced by the NYX12 code. The computational do-
main is 10243 in size; each location contains a single precision floating point value
corresponding to the dark matter density at each grid point. Each timestep corresponds
to 4GB of data. We utilize 150 timesteps for our demo purposes.

To demonstrate the difference between the 100Gbps network and the previous
10Gbps network, we split the 100Gbps connection into two parts. 90Gbps of the band-
width is used to transfer the full dataset. 10Gbps of the bandwidth is used to transfer
1/8th of the same dataset at the same resolution. By comparing the real-time head-to-

11GPFS http://www.ibm.com/systems/software/gpfs
12NYX: https://ccse.lbl.gov/Research/NYX/index.html

6

head streaming and rendering results of the two cases, the enhanced capabilities of the
100Gbps network are clearly demonstrated.

Flash-based
GPFS Cluster

Receive/
Render

H1

Sender 01

Sender 02

Sender 16

Sender 03

… …

NERSC
Router

100G
Pipe

Receive/
Render

H2

Receive/
Render

H3

Receive/
Render

H4

Low
Bandwidth
Receive/

Render/Vis

LBL
Booth
Router

High
Bandwidth

Vis Srv

IB Cloud

Gigabit
Ethernet

Infiniband
Connection

10GigE
Connection

1 GigE
Connection

Low
Bandwidth

Display

High
Bandwidth
Display

Figure 3: System diagram for the visualization demo at SC11.

4.1 Demo Configuration

Figure 3 illustrates the hardware configuration used for this demo. On the NERSC
side, the 16 servers described above, named ”Sender 01-16”, are used to send data.
The data resides on a the GPFS file system. In the LBL booth, four hosts, named
”Receive/Render H1-H4”, are used to receive data for the high bandwidth part of the
demo. Each server has two 8-core AMD processors and 64 GB of system memory.
Each host is equipped with 2 Myricom dual-port 10Gbps network adaptors which are
connected to the booth Alcatel-Lucent router via optical fibers. The ”Receive/Render”
servers are connected to the ”High Bandwidth Vis Server” via 1Gbps ethernet connec-
tions. The 1Gbps connection is used for synchronization and communication of the
rendering application, not for transfer of the raw data. A HDTV is connected to this

7

server to display rendered images. For the low bandwidth part of the demo, one server,
named ”Low Bandwidth Receive/Render/Vis”, is used to receive and render data. A
HDTV is also connected to this server to display rendered images. The low bandwidth
host is equipped with 1 dual-port 10Gbps network adaptor which is connected to the
booth router via 2 optical fibers. The one-way latency from NERSC to the LBL booth
was measured at 16.4 ms.

4.2 UDP shuffling

Prior work by Bethel, et al. [6, 7] has demonstrated that the TCP protocol is ill-suited
for applications that need sustained high-throughput utilization over a high-latency net-
work channel. For visualization purposes, occasional packet loss is acceptable, we
therefore follow the approach of VisaPult[6] and use the UDP protocol for transferring
the data for this demo.

We prepared UDP packets by adding position (x, y, z) information in conjunction
with the density information. While this increases the size of the streamed dataset by
a factor of 3 (summing up to a total of 16GB per timestep), this made the task of the
placing the received element into the right memory offset trivial. Also, we experi-
mented with different data decomposition schemes (z-ordered space filling curves) as
opposed to a z-slice based ordering, and this scheme allowed us to experiment with
both schemes without any change in the packet packing/unpacking logic.

Batch#,n X1Y1Z1D1 X2Y2Z2D2 … … XnYnZnDn

UDP Packet

In the final run n=560, packet size is 8968 bytes

Figure 4: UDP Packet

As shown in Figure 4, a UDP packet contains a header followed by a series of quad-
value segments. In the header, the batch number used for synchronization purposes,
i.e., packets from different time steps have different batch numbers. An integer n is
also included in the header to specify the number of quad-value segments in this packet.
Each quad-value segment consists 3 integers, which are the X, Y and Z position in the
10243 matrix, and one float value which is the particle density at this position. To
maximize the packet size within the MTU value of 9000, the number n is set to 560
which gives the optimal packet size of 8968 bytes, which is the largest possible packet

8

size under 8972 bytes (MTU size minus IP and UDP headers) with the above described
data structure.

For each time step, the input data is split into 32 streams along the z-direction;
each stream contains a contiguous slice of the size 1024 ∗ 1024 ∗ 32. Each stream is
staged, streamed and received separately for the purpose of reliability and maximizing
parallel throughput. Figure 4 shows the flow of data for one stream. A stager first
reads the data into a memory-backed file system (/dev/shm), it is optimized to reach
the maximum read performance of the underlying file system. The stager also buffers
as many future time steps as possible, to minimize the effect of the filesystem load
variation.

Shuffler Receiver Stager Render SW

GPFS
Flash

/dev/shm /dev/shm

Flow of Data

Send Server at NERSC Receive Server at SC Booth

Figure 5: Flow of Data

A shuffler then opens the staged file from /dev/shm, and transmits UDP packets
inside the file. After the shuffling is finished, the file is removed from /dev/shm, so
that the stager can stage in a future time step. To control the rate of each UDP stream,
we use the Rate Control tool developed for the Visapult project [6]. Rate Control can
accurately calibrate the data transmission rate of the UDP stream to the computational
horsepower of the CPU core.

The receiver task allocates a region in /dev/shm upon initialization, which corre-
sponds to the size of the slice. For each UDP packet it receives in the transmitted
stream, the receiver decodes the packet and places the particle density values at the
proper offset in shared memory. The rendering software spawns 32 processes across
all the Receiver/Render servers, each process opens the corresponding data slice from
/dev/shm in read-only mode, and renders the data to produce an image.

For the high bandwidth demo, the rate of the shufflers is set 2.81Gbps, so that the
total of 32 streams utilizes 90Gbps of the total bandwidth. For the low bandwidth
demo, 4 streams are used, transferring 1/8 of the full data set. The rate of the shufflers

9

is set to 2.5Gbps to utilize 10Gbps of the total bandwidth.

4.3 Synchronization Strategy

The synchronization is performed at the NERSC end. All shufflers, including 32 for
high bandwidth demo and 4 for low band demo, are listening to a UDP port for the
synchronization packet. Sent out from a controller running on a NERSC host, the
synchronization packets contains the location of the next file to shuffle out. Upon
receiving this synchronization packet, a shuffler will stop shuffling the current time
step (if it is unfinished), and start shuffling the next time step, until it has shuffled all
data in the time step, or receives the next synchronization packet. This mechanism
ensures all the shufflers, receivers, and renders are synchronized to the same time step.

We also made an important decision to decouple the streaming tasks from the ren-
dering tasks on each host. The cores responsible for unpacking UDP packets, place
the data into a memory-mapped file location. This mmap’ed region is dereferenced in
the rendering processes. There is no communication or synchronization between the
rendering tasks and streaming tasks on each node.

Figure 6: Volume rendering of a timestep from the cosmology dataset. The 90Gbps
stream is shown on the left, 10Gbps on the right

10

4.4 Rendering

We used Paraview13, an open-source, parallel, high performance scientific visualization
package for rendering the cosmological dataset. We used a ray-casting based volume
rendering technique to produce the images shown in Figure 6. The cubic volume is
decomposed in a z-slice order into 4 segments and streamed to individual rendering
nodes. Paraview uses 8 cores on each rendering node to produce intermediate images
and then composites the image using sort-last rendering over a local 10Gbps network.
The final image is displayed on a front-end node connected to a display.

Since the streaming tasks are decoupled from the rendering tasks, Paraview is es-
sentially asked to volume render images as fast as possible in an endless loop. It is
possible, and we do observe artifacts in the rendering as the real-time streams deposit
data into different regions in memory. In practice, the artifacts are not distracting.
We acknowledge that one might want to adopt a different mode of rendering (using
pipelining and multiple buffers) to stream data, corresponding to different timesteps,
into distinct regions in memory.

4.5 Optimizations

On the 16 sending servers, only 2-3 stagers and 2-3 shufflers are running at any given
time; the load is relatively light and no special tuning is necessary to sustain the 2-3
UDP streams (¡3Gbps each). On both high bandwidth and low bandwidth receive/ren-
der servers, the following optimizations are implemented (as shown in Figure 7):

• Each 10Gbps NIC in the system is bound to a specific core by assigning all the
interrupts to that core. For the servers with 4 ports, each NIC is bound to a core in a
different NUMA node;

• Two receivers are bound to a 10Gbps NIC by binding the processes to the same core
as the port;

• For each stream, the render process is bound to the same NUMA node as the receiver,
but to a different core;

• To minimize the NUMA effect, for each stream, the memory region in /dev/shm is
preallocated to make sure it resides in the same NUMA nodes as the receivers and
rendering processes.

We experimented with alternative core-binding strategies, however, the packet loss
rate is minimized when binding both the NIC and 2 receivers to the same core. We

13Paraview http://www.paraview.org

11

Mem Mem

Mem Mem

Receiver 1

10G Port

Receiver 2

Render 1

NUMA Node

Core

Render 2

Figure 7: NUMA Binding

suspect that this is due to cache misses. For this reason, the main performance lim-
itation is the computational horsepower of the CPU core. A max receiving rate of
≈ 2.7Gbps/stream can be reached when one core is handling two receiving streams
and all the interrupts from the corresponding NIC port. This causes a ≈ 5% packet
loss in the high bandwidth demo, when the shuffling rate is 2.81Gbps/stream. For the
low bandwidth demo, the packet loss is smaller than 1 percent.

4.6 Network Performance Results

Figure 8: Images from the SC11 showfloor. The 10Gbps stream appears on the top,
and the 90Gbps stream on the bottom

We streamed 2.3TB of data from NERSC to SC11 show floor in Seattle in ≈ 3.4
minutes during live demonstrations at SC11. Each timestep, corresponding to 16GB
of data, took ≈ 1.4 seconds to reach the rendering hosts at our SC11 booth. The
volume rendering took an additional ≈ 2.5 seconds before the image was updated.
Aggregating across the 90Gbps and 10Gbps demonstrations, we were able to achieve

12

a peak bandwidth utilization of ≈ 99Gbps. We observed an average performance of
≈ 85Gbps during various time periods at SC11. The bandwidth utilization information
was obtained directly from the 100Gbps port statistics on the Alcatel-Lucent router in
the LBL booth. Figure 8 show live screenshots of the demo in action.

5 Climate Data over 100Gbps

High-bandwidth connections help increase throughput of scientific applications, open-
ing up new opportunities for sharing data that were simply not possible with 10Gbps
networks. However, increasing the network bandwidth is not sufficient by itself. Next-
generation high-bandwidth networks need to be evaluated carefully from the applica-
tions’ perspectives. In this section, we explore how climate applications can adapt and
benefit from next generation high-bandwidth networks.

Data volume in climate applications is increasing exponentially. For example, the
recent ”Replica Core Archive” data from the IPCC Fifth Assessment Report (AR5) is
expected to be around 2PB [10], whereas, the IPCC Forth Assessment Report (AR4)
data archive is only 35TB. This trend can be seen across many areas in science [2, 9].
An important challenge in managing ever increasing data sizes in climate science is
the large variance in file sizes [3, 21, 11]. Climate simulation data consists of a mix of
relatively small and large files with irregular file size distribution in each dataset. This
requires advanced middleware tools to move data efficiently in long-distance high-
bandwidth networks. We claim that with such tools, data can be treated as first-class
citizen for the entire spectrum of file sizes, without compromising on optimum usage
of network-bandwidth.

To justify this claim, we present our experience from the SC11 ANI demonstra-
tion, titled ‘Scaling the Earth System Grid to 100Gbps Networks’. We used a 100Gbps
link connecting National Energy Research Scientific Computing Center (NERSC), Ar-
gonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL). For
this demonstration, we developed a new data streaming tool that provides dynamic data
channel management and on-the-fly data pipelines for fast and efficient data access.

The data from IPCC Fourth Assessment Report (AR4) phase 3, CMIP-3, with total
size of 35TB, was used in our tests and demonstrations. In general, it took approxi-
mately 30 minutes to move CMIP-3 data over 100Gbps. This would have taken around
5 hours over a 10Gbps network, which is the expected 10-times gain in data transfer
performance. In the demo, CMIP-3 data was staged successfully into the memory of
computing nodes across the country at ANL and ORNL from NERSC data storage over

13

the 100Gbps network on demand.

5.1 Motivation

Climate data is one of the fastest growing scientific data sets. Simulation results are
accessed by thousands of users around the world. Many institutions collaborate on
the generation and analysis of simulation data. The Earth System Grid Federation14

(ESGF) [10, 9] provides necessary middleware and software to support end-user data
access and data replication between partner institutions. High performance data move-
ment between ESG data nodes is an important challenge, especially between geograph-
ically separated data centers.

In this study, we evaluate the movement of bulk data from ESG data nodes, and state
the necessary steps to scale-up climate data movement to 100Gbps high-bandwidth net-
works. As a real-world example, we specifically focus on data access and data distribu-
tion for the Coupled Model Intercomparison Project (CMIP) from Intergovernmental
Panel on Climate Change (IPCC).

IPCC climate data is stored in common NetCDF data files. Metadata from each
file, including the model, type of experiment, and the institution that generated the data
file are retrieved and stored when data is published. Data publication is accomplished
through an Earth System Grid (ESG) gateway server. Gateways work in a federated
manner such that the metadata database is synchronized between each gateway. The
ESG system provides an easy-to-use interface to search and locate data files accord-
ing to given search patterns. Data files are transferred from a remote repository using
advanced data transfer tools (e.g., GridFTP [1, 8, 21]) that are optimized for fast data
movement. A common use-case is replication of data to achieve redundancy. In ad-
dition to replication, data files are copied into temporary storage in HPC centers for
post-processing and further climate analysis.

Depending on the characteristics of the experiments and simulations, files may have
small sizes such as several hundreds of megabytes, or they can be as large as several
gigabytes [10]. IPCC data files are organized in a hierarchical directory structure. Di-
rectories are arranged according to experiments, metadata characteristics, organization
lists, and simulation models. In addition to having many small files, bulk climate data
consists of many directories. This puts extra burden on filesystem access and network
transfer protocols. An important challenge in dealing with climate data movement is
the lots-of-small-files problem [15, 23, 8]. Most of the end-to-end data transfer tools
are designed for moving large data files. State-of-the-art data movement tools require

14Earth System Grid Federation: http://esgf.org/

14

managing each file movement separately. Therefore, dealing with small files imposes
extra bookkeeping overhead, especially over high latency networks.

The Globus Project also recognized the performance issues with small files, and
added a number of features to their GridFTP tool to address these [8]. This includes an
option to do multiple files concurrently (-concurrency), and an option to do pipelining
(-pipeline). They also have the -fast option, which reuses the data channel operations.
Other similar parallel data mover tools include FDT [18] from Caltech and bbcp from
SLAC [13].

5.2 Climate Data Distribution over 100Gbps

Scientific applications for climate analysis are highly data-intensive [5, 2, 10, 9]. A
common approach is to stage data sets into local storage, and then run climate applica-
tions on the local data files. However, replication comes with its storage cost and re-
quires a management system for coordination and synchronization. 100Gbps networks
provide the bandwidth needed to bring large amounts of data quickly on-demand. Cre-
ating a local replica beforehand may no longer be necessary. By providing data stream-
ing from remote storage to the compute center where the application runs, we can better
utilize available network capacity and bring data into the application in real-time. If we
can keep the network pipe full by feeding enough data into the network, we can hide
the effect of network latency and improve the overall application performance. Since
we will have high-bandwidth access to the data, management and bookkeeping of data
blocks would play an important role in order to use remote storage resources efficiently
over the network.

The standard file transfer protocol FTP establishes two network channels [19, 23].
The control channel is used for authentication, authorization, and sending control mes-
sages such as what file is to be transferred. The data channel is used for streaming the
data to the remote site. In the standard FTP implementation, a separate data channel is
established for every file. First, the file request is sent over the control channel, and a
data channel is established for streaming the file data. Once the transfer is completed,
a control message is sent to notify that end of file is reached. Once acknowledgement
for transfer completion is received, another file transfer can be requested. This adds
at least three additional round-trip-times over the control channel [8, 23]. The data
channel stays idle while waiting for the next transfer command to be issued. In addi-
tion, establishing a new data channel for each file increases the latency between each
file transfer. The latency between transfers adds up, as a results, overall transfer time
increases and total throughput decreases. This problem becomes more drastic for long

15

distance connections where round-trip-time is high.
Keeping the data channel idle also adversely affects the overall performance for

window-based protocols such as TCP. The TCP protocol automatically adjusts the
window size; the slow-start algorithm increases the window size gradually. When the
amount of data sent is small, transfers may not be long enough to allow TCP to fully
open its window, so we can not move data at full speed.

On the other hand, data movement requests, both for bulk data replication and data
streaming for large-scale data analysis, deal with a set of many files. Instead of moving
data from a single file at a time, the data movement middleware could handle the entire
data collection. Therefore, we have developed a simple data movement utility, called
the Climate Data Mover, that provides dynamic data channel management and block-
based data movement. Figure 9 shows the underlying system architecture. Data files
are aggregated and divided into simple data blocks. Blocks are tagged and streamed
over the network. Each data block’s tag includes information about the content inside.
For example, regular file transfers can be accomplished by adding the file name and
index in the tag header. Since there is no need to keep a separate control channel, it
does not get affected by file sizes and small data requests. The Climate Data Mover
can be used both for disk-to-disk data replication and also for direct data streaming into
climate applications.

5.3 Climate Data Mover

Data movement occurs in two steps. First, data blocks are read into memory buffers
(disk I/O). Then memory buffers are transmitted over the network (network I/O). Each
step requires CPU and memory resources. A common approach to increase overall
throughput is to use parallel streams, so that multiple threads (and CPU cores) work si-
multaneously to overcome the latency cost generated by disk and memory copy opera-
tion in the end system. Another approach is to use concurrent transfers, where multiple
transfer tasks cooperate together to generate high throughput data in order to fill the
network pipe [25, 4]. In standard file transfer mechanisms, we need more parallelism
to overcome the cost of bookkeeping and control messages. An important drawback
in using application level tuning (parallel streams and concurrent transfers) is that they
cause extra load on the system and resources are not used efficiently. Moreover, the use
of many TCP streams may oversubscribe the network and cause performance degrada-
tions.

In order to be able to optimally tune the data movement through the system, we
decoupled network and disk I/O operations. Transmitting data over the network is

16

Figure 9: Climate Data Mover Framework

logically separated from the reading/writing of data blocks. Hence, we are able to have
different parallelism levels in each layer. Our data streaming utility, the Climate Data

Mover, uses a simple network library consisting of two layers: a front-end and a back-
end. Each layer works independently so that we can measure performance and tune
each layer separately. Those layers are tied to each other with a block-based virtual
object, implemented as a set of shared memory blocks. In the server, the front-end is
responsible for the preparation of data, and the back-end is responsible for the sending
of data over the network. On the client side, the back-end components receive data
blocks and feed the virtual object, so the corresponding front-end can get and process
data blocks.

The front-end component requests a contiguous set of memory blocks from the
virtual object. Once they are filled with data, those blocks are released, so that the
back-end components can retrieve and transmit the blocks over the network. Data
blocks in the virtual object include content information, i.e., file id, offset and size.
Therefore, there is no need for further communication between client and server in
order to initiate file transfers. This is similar to having an on-the-fly ‘tar’ approach

17

bundling and sending many files together. Moreover, by using our tool, data blocks can
be received and sent out-of-order and asynchronously. Figure 10 shows client/server
architecture for data movement over the network. Since we do not use a control channel
for bookkeeping, all communication is mainly over a single data channel, over a fixed
port. Bookkeeping information is embedded inside each block. This has some benefits
for ease of firewall traversal over wide-area [16].

Figure 10: Climate Data Mover Server/Client Architecture

In our test case, we transfer data files from the NERSC GPFS filesystem into the
memory of ALCF and OLCF nodes. The Climate Data Mover server initiates multiple
front-end and back-end threads. The front-end component reads data, attaches a file
name and index information, and releases blocks to be sent to the client. The client
at the remote site receives data blocks and makes them ready to be processed by the
corresponding front-end threads. For a disk-to-disk transfer, the client’s front-end can
simply call file write operations. The virtual object also acts as a large cache. For
disk to memory, the front-end keeps the data blocks and releases them once they are
processed by the application. The main advantage with this approach is that we are not
limited by the characteristics of the file sizes in the dataset. Another advantage over
FTP-based tools is that we can dynamically increase/descrease the parallelism level
both in the network communication and I/O read/write operations, without closing and

18

Figure 11: System diagram for the demo at SC11.

reopening the data channel connection (as is done in regular FTP variants).

5.4 Test Results

Figure 11 represents the overall system details for the SC11 demo. We used 10 host
pairs, each connected to the network with a 10 Gbps link. We used TCP connection
between host pairs; default settings have been used so that TCP window size is not
set specifically. We have tested the network performance between NERSC and AN-
L/ORNL with various parameters, such as, total size of virtual object, thread count for
reading from GPFS filesystem, and multiple TCP streams to increase the utilization of
the available bandwidth. According to our test results, we have manually determined
best set of parameters for the setup. Specific host tuning issues about IRQ binding and
interrupt coalescing described in the following section have not been applied, and are
open to future explorations.

Our experiment moved data stored at NERSC to application nodes at both ANL
and ORNL. We staged the Coupled Model Intercomparison Project (CMIP) data set
from Intergovernmental Panel on Climate Change (IPCC) from the GPFS filesystem
at NERSC. A total 35TB was transferred in about 30 minutes. The default filesystem
block size was set to 4MB, so we also used 4MB blocks in Climate Data Mover for
better read performance. Each block’s data section was aligned according to the system
pagesize. Total size of the virtual object was 1GB both at the client and the server

19

applications. The servers at NERSC used eight front-end threads on each host for
reading data files in parallel. The clients used four front-end threads for processing
received data blocks. In the demo, four parallel TCP streams (four back-end threads)
were used for each host-to-host connection. We observed 83 Gbps total throughput
both using both NERSC to ANL and NERSC to ORNL, as shown in Figure 12.

Figure 12: SC11 Climate100 demonstration results, showing the data transfer through-
put

5.5 Performance of Climate Data Mover

The Climate Data Mover is able to handle both small and large files with high per-
formance. Although a detailed analysis of it is beyond the scope of this paper, we
present a brief comparison with GridFTP, for evaluating performance of the Climate

20

Figure 13: GridFTP vs. Climate Data Mover (CDM)

Data Mover in transferring small files. Two hosts, one at NERSC and one at ANL,
were used from the ANI 100Gbps Testbed. The ANI 100Gbps Testbed configuration,
as shown in Figure 14, is described in the following section in details. Each host is con-
nected with four 10Gbps NICs. Total throughput is 40Gbps between two hosts. We did
not have access to a high performance file system; therefore, we simulate the effect of
file sizes by creating a memory file system (tmpfs with a size of 20G). We created files
with various sizes (i.e., 10M, 100M, 1G) and transferred those files continuously while
measuring the performance. In both Climate Data Mover and GridFTP experiments,
TCP buffer size is set to 50MB in order to get best throughput. The pipelining feature
was enabled in GridFTP. A long file list (repeating file names that are in the memory
filesystem) is given as input. Figure 13 shows performance results with 10MB files.
We initiated four server applications at ANL node (each running on a separate NIC),
and four client applications at NERSC node. In the GridFTP tests, we tried both 16
and 32 concurrent streams (-cc option). The Climate Data Mover was able to achieve
37Gbps of throughput, while GridFTP was not able achieve more than 33Gbps.

6 Host Tuning Issues

Optimal utilization of the network bandwidth on modern linux hosts requires a fair
amount of tuning. There are several studies on network performance optimization
in 10Gbps networks [22, 24]. However, only a few recent studies have tested high-
speed data transfers in a 100Gbps environment. One of these is the team at Indiana
University’s testing of the Lustre filesystem over the 100Gbps network at SC11 [14].
Other recent studies include presentations by Rao [20] and by the team at Nasa Goddard

21

[12]. They all have found that a great deal of tuning was required. In this section we
specifically discuss modifications that helped us increase the total NIC throughput.
These additional host tuning tests were done after the SC11 conference on ESnet’s
ANI 100GbpsTestbed, shown in Figure 14.

ANI 100G
Router

 4x10GE

 4x 10GE

NERSC ANL

Updated February 13, 2012

ANI Middleware Testbed

 4x10GE

 4x10GE

100G
Router

 4x10GE
100G 100G

ANI 100G Network
(RTT = 47ms)

 4x10GE

 4x10GE (MM)

Figure 14: ANI 100Gbps Testbed Configuration used for Host Tuning Experiments

We conducted these series of experiments on three hosts at NERSC connected with
a 100Gbps link to three hosts at ANL. After adjusting the tuning knobs, we were able
to effectively fill the 100Gbps link with only 10 TCP sockets, one per 10Gbps NIC. We
used four 10GE NICS in two of the hosts, and two (out of 4) 10GE NICs in the third
host, as shown in Figure 14. The results of the two applications described in this paper
used some, but not all of these techniques, as they both used more than 10 hosts on
each end instead of just 3, thereby requiring fewer tuning optimizations. Using all of
the tuning optimizations described below, we were able to achieve a total of 60 Gbps
throughput (30 Gbps in each direction) on a single host with four 10GE NICs. 60 Gbps
is the limit of the PCI bus. We were also able to achieve 94 Gbps TCP and 97 Gbps
UDP throughput in one direction using just 10 sockets. UDP is CPU bound on the send
host, indicating that just under 10Gbps per flow is the UDP limit of today’s CPU cores
regardless of NIC speed.

6.1 TCP and UDP Tuning

We observed a latency of 23 ms on the path from NERSC to ANL each way, therefore
the TCP window size needed to be increased to hold the entire bandwidth delay product
of 64 MB, as described on fasterdata 15 For UDP, the optimal packet size to use is 8972

15http://fasterdata.es.net/host-tuning/background/

22

bytes (path MTU minus the IP and UDP header). For UDP, it was also important to
increase SO SNDBUF and SO RCVBUF using the setsockopt system call to 4MB in
order to saturate a 10GE NIC. Since these tests were conducted on a dedicated network
with no competing traffic or congestion, there was no reason to use multiple TCP flows
per NIC; a single flow was able to fill the 10G pipe.

6.2 IRQ and Thread Binding

With modern multi-socket multi-core architectures, there is a large performance penalty
if the NIC interrupts are being handled on one processor, while the user read process is
on a different processor, as data will need to be copied between processors. We solved
this problem using the following approach. First, we disabled irqbalance. irqbalance

distributes interrupts across CPUs to optimize for L2 cache hits. While this optimiza-
tion is desirable in general, it does not maximize performance in this test configuration.
Therefore we explicitly mapped the interrupt for each NIC to a separate processor core,
as described on fasterdata, 16 and used the sched setaffinity system call to bind the net-
work send or receive process to that same core. For a single flow, irqbalance does
slightly better than the static binding, but, for four streams, irqbalance performs much
worse than our static binding. This is because as the overall CPU load goes up, the
IRQ distribution policy becomes less likely to provide the right binding to the ethernet
interrupts, leading to the host dropping packets and TCP backing off. Figure 15 shows
the results for TCP and UDP performance of 4 streams using irqbalance compared to
manual IRQ binding. There is an 20 percent improvement for TCP, and 38 percent for
UDP.

Tuning Setting without tuning with tuning % improvement
Interrupt coalescing (TCP) 24 36.8 53.3333333

Interrupt coalescing (UDP) 21.1 38.8 83.8862559

IRQ Binding (TCP) 30.6 36.8 20.2614379

IRQ Binding (UDP) 27.9 38.5 37.9928315

0

5

10

15

20

25

30

35

40

45

Interrupt
coalescing

(TCP)

Interrupt
coalescing

(UDP)

IRQ Binding
(TCP)

IRQ Binding
(UDP)

G
bp

s

Host Tuning Results

without tuning

with tuning

Figure 15: Host Tuning Results

16http://fasterdata.es.net/host-tuning/interrupt-binding/

23

6.3 NIC Tuning

We used two well-known techniques to reduce the number of interrupts to improve
performance: Jumbo frames (9000 byte MTUs), and interrupt coalescing. We also
increased txqueuelen to 10000. Figure 15 shows that enabling interrupt coalescing and
setting it to 100 milliseconds provides a 93 percent performance gain for UDP and 53
percent for TCP.

6.4 BIOS Tuning

It is important to verify that a number of BIOS settings are properly set to obtain max-
imum performance. We modified the following settings in the course of our experi-
ments:

• hyper-threading: We disabled hyper-threading. While it simulates more cores than
are physically present, this can reduce performance under variable load conditions

• memory speed: The default BIOS setting did not set the memory bus speed to the
maximum.

• cpuspeed: The default BIOS setting did not set the CPU speed to the maximum.
• energy saving: We disabled this to ensure the CPU was always running at the max-

imum speed.

6.5 Open Issues

This paper has shown that one needs to perform a lot of hand-tuning in order to saturate
a 100Gbps networks. We need to optimize CPU utilization in order to achieve higher
networking performance. The Linux operating system provides a service, irqbalance,
but as this paper has shown, its generic algorithm fails under certain workloads. Stat-
ically binding IRQs and send/receive threads to a dedicated core is a simple solutions
that works well in a well defined, predictable, environment, but quickly becomes diffi-
cult to manage in a production context where many different applications may have to
be deployed.

PCI Gen3 motherboards are just becoming available, allowing up to 8Gbps per
lane. These motherboards will allow a single NIC to theoretically go up to 64Gbps.
In this environment more parallel flows will be needed, as current CPU speed limits
UDP flows to around 10Gbps, and TCP flows to around 18Gbps. This problem will
be further exacerbated when PCIe Gen4, slated for 2015, will further increase PCI
bandwidth.

24

Last but not least, the various experiments reported in the paper were running in
a closed network with no competing traffic. More thorough testing will be needed to
identify and address issues in a production network.

7 Conclusion

100Gbps networks have arrived, and with careful application design and host tuning, a
relatively small number of hosts can fill a 100Gbps pipe. Many of the host tuning tech-
niques from 1Gbps to 10Gbps transition still apply. These include TCP/UDP buffer
tuning, using jumbo frames, and using interrupt coalescing. With the current gener-
ation of multi-core systems, IRQ binding also is now essential for maximizing host
performance.

While application of these tuning techniques will likely improve the overall through-
put of the system, it is important to follow an experimental methodology in order to
systematically increase performance. In some cases a particular tuning strategy may
not achieve the expected results. We recommend starting with the simplest core I/O
operation possible, and then adding layers of complexity on top of that. For example,
one can first tune the system for a single network flow using a simple memory to mem-
ory transfer tool such as Iperf17 or nuttcp18. Next optimize the multiple concurrent
streams, trying to model the application behavior as closely as possible. Once this is
done, the final step is to tune the application itself. The main goal of this methodology
is to verify performance for each component in the critical path. Applications may
need to be redesigned to get the best out of high-bandwidth networks. In this paper, we
demonstrated two such applications to take advantage of this network, and described a
number of application design issues and host tuning strategies necessary for enabling
those applications to scale to 100Gbps.

Acknowledgments

We would like to thank Peter Nugent and Zarija Lukic for providing us with the cos-
mology datasets used in the visualization demo. Our thanks go out to Patrick Dorn,
Evangelos Chaniotakis, John Christman, Chin Guok, Chris Tracy and Lauren Rotman
for assistance with 100Gbps installation and testing at SC11. Jason Lee, Shane Canon,
Tina Declerck and Cary Whitney provided technical support with NERSC hardware.

17iperf: http://iperf.sourceforge.net/
18nuttcp: http://www.nuttcp.net

25

Ed Holohan, Adam Scovel, and Linda Winkler provided support at ALCF. Jason Hill,
Doug Fuller, and Susan Hicks provided support at OLCF. Hank Childs, Mark Howison
and Aaron Thomas assisted with troubleshooting visualization software and hardware.
John Dugan and Gopal Vaswani provided monitoring tools for 100Gbps demonstra-
tions at SC11.

This work was supported by the Director, Office of Science, Office of Basic En-
ergy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the ESnet Advanced Network Initiative
(ANI) Testbed, which is supported by the Office of Science of the U.S. Department
of Energy under the contract above, funded through the The American Recovery and
Reinvestment Act of 2009.

References

[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and
I. Foster. The globus striped gridftp framework and server. In Proceedings of the

2005 ACM/IEEE conference on Supercomputing, SC ’05, pages 54–, Washington,
DC, USA, 2005. IEEE Computer Society.

[2] M. Balman and S. Byna. Open problems in network-aware data management
in exa-scale computing and terabit networking era. In Proceedings of the first

international workshop on Network-aware data management, NDM ’11, pages
73–78, 2011.

[3] M. Balman and T. Kosar. Data scheduling for large scale distributed applications.
In Proceedings of the 5th ICEIS Doctoral Consortium, in conjunction with the

International Conference on Enterprise Information Systems (ICEIS’07), 2007.

[4] M. Balman and T. Kosar. Dynamic adaptation of parallelism level in data transfer
scheduling. Complex, Intelligent and Software Intensive Systems, International

Conference, 0:872–877, 2009.

[5] BES Science Network Requirements, Report of the Basic Energy Sciences Net-
work Requirements Workshop. Basic Energy Sciences Program Office, DOE
Office of Science and the Energy Sciences Network, 2007.

26

[6] E. W. Bethel. Visapult – A Prototype Remote and Distributed Application and
Framework. In Proceedings of Siggraph 2000 – Applications and Sketches.
ACM/Siggraph, July 2000.

[7] E. W. Bethel and J. Shalf. Consuming Network Bandwidth with Visapult. In
C. Hansen and C. Johnson, editors, The Visualization Handbook, pages 569–589.
Elsevier, 2005. LBNL-52171.

[8] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster. Gridftp pipelining.
In Proceedings of the 2007 TeraGrid Conference, June 2007.

[9] D. N. Williams et al. Data Management and Analysis for the Earth System Grid.
Journal of Physics: Conference Series, SciDAC 08 conference proceedings, vol-
ume 125 012072, 2008.

[10] D. N. Williams et al. Earth System Grid Federation: Infrastructure to Support Cli-
mate Science Analysis as an International Collaboration. Data Intensive Science
Series: Chapman & Hall/CRC Computational Science, ISBN 9781439881392,
2012.

[11] S. Doraimani and A. Iamnitchi. File grouping for scientific data management:
lessons from experimenting with real traces. In Proceedings of the 17th interna-

tional symposium on High performance distributed computing, HPDC ’08, pages
153–164, 2008.

[12] P. Gary, B. Find, and P. Lang. Introduction to GSFC High End Computing: 20,
40 and 100 Gbps Network Testbeds. http://science.gsfc.nasa.gov/
606.1/docs/HECN_10G_Testbeds_082210.pdf, 2010.

[13] A. Hanushevsky, A. Trunov, and L. Cottrell. Peer-to-peer computing for secure
high performance data copying. In Proceedings of computing in high energy and

nuclear physics, September 2001.

[14] IU showcases innovative approach to networking at SC11 SCinet Research
Sandbox. http://ovpitnews.iu.edu/news/page/normal/20445.
html, 2011.

[15] R. Kettimuthu, S. Link, J. Bresnahan, M. Link, and I. Foster. Globus xio pipe
open driver: enabling gridftp to leverage standard unix tools. In Proceedings of

the 2011 TeraGrid Conference: Extreme Digital Discovery, TG ’11, pages 20:1–
20:7. ACM, 2011.

27

[16] R. Kettimuthu, R. Schuler, D. Keator, M. Feller, D. Wei, M. Link, J. Bresnahan,
L. Liming, J. Ames, A. Chervenak, I. Foster, and C. Kesselman. A Data Manage-
ment Framework for Distributed Biomedical Research Environments. e-Science
Workshops, 2010 Sixth IEEE International Conference on, 2011.

[17] Magellan Report On Cloud Computing for Science. http://science.

energy.gov/˜/media/ascr/pdf/program-documents/docs/

Magellan_Final_Report.pdf, 2011.

[18] Z. Maxa, B. Ahmed, D. Kcira, I. Legrand, A. Mughal, M. Thomas, and R. Voicu.
Powering physics data transfers with fdt. Journal of Physics: Conference Series,
331(5):052014, 2011.

[19] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct. 1985.
Updated by RFCs 2228, 2640, 2773, 3659, 5797.

[20] N. Rao and S. Poole. DOE UltraScience Net: High-Performance Experimen-
tal Network Research Testbed. http://computing.ornl.gov/SC11/

documents/Rao_UltraSciNet_SC11.pdf, 2011.

[21] A. Sim, M. Balman, D. Williams, A. Shoshani, and V. Natarajan. Adaptive trans-
fer adjustment in efficient bulk data transfer management for climate dataset. In
Parallel and Distributed Computing and Systems, 2010.

[22] T. Yoshino et al. Performance Optimization of TCP/IP over 10 gigabit Ethernet
by Precise Instrumentation. Proceedings of the ACM/IEEE conference on Super-
computing, 2008.

[23] D. Thain and C. Moretti. Efficient access to many samall files in a filesystem for
grid computing. In Proceedings of the 8th IEEE/ACM International Conference

on Grid Computing, GRID ’07, pages 243–250, Washington, DC, USA, 2007.
IEEE Computer Society.

[24] W. Wu, P. Demar, and M. Crawford. Sorting reordered packets with interrupt
coalescing. Comput. Netw., 53:2646–2662, October 2009.

[25] E. Yildirim, M. Balman, and T. Kosar. Dynamically tuning level of parallelism in
wide area data transfers. In Proceedings of the 2008 international workshop on

Data-aware distributed computing, DADC ’08, pages 39–48. ACM, 2008.

28

