Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Measuring Heat Dissipation and Entropic Potential in Battery Cathodes Made with Conjugated and Conventional Polymer Binders Using Operando Calorimetry.

Abstract

This study explores the influence of electronic and ionic conductivities on the behavior of conjugated polymer binders through the measurement of entropic potential and heat generation in an operating lithium-ion battery. Specifically, the traditional poly(vinylidene fluoride) (PVDF) binder in LiNi0.8Co0.15Al0.05O2 (NCA) cathode electrodes was replaced with semiconducting polymer binders based on poly(3,4-propylenedioxythiophene). Two conjugated polymers were explored: one is a homopolymer with all aliphatic side chains, and the other is a copolymer with both aliphatic and ethylene oxide side chains. We have shown previously that both polymers have high electronic conductivity in the potential range of NCA redox, but the copolymer has a higher ionic conductivity and a slightly lower electronic conductivity. Entropic potential measurements during battery cycling revealed consistent trends during delithiation for all of the binders, indicating that the binders did not modify the expected NCA solid solution deintercalation process. The entropic signature of polymer doping to form the conductive state could be clearly observed at potentials below NCA oxidation, however. Operando isothermal calorimetric measurements showed that the conductive binders resulted in less Joule heating compared to PVDF and that the net electrical energy was entirely dissipated as heat. In a comparison of the two conjugated polymer binders, the heat dissipation was lower for the homopolymer binder at lower C-rates, suggesting that electronic conductivity rather than ionic conductivity was the most important for reducing Joule heating at lower rates, but that ionic conductivity became more important at higher rates.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View