- Main
Methodology for Assessing Retrofitted Hydrogen Combustion and Fuel Cell Aircraft Environmental Impacts
Abstract
Hydrogen (H2) combustion and solid oxide fuel cells (SOFCs) can potentially reduce aviation-produced greenhouse gas emissions compared to kerosene propulsion. This paper outlines a methodology for evaluating performance and emission tradeoffs when retrofitting conventional kerosene-powered aircraft with lower-emissionH2 combustion and SOFC hybrid alternatives. The proposed framework presents a constant-range approach for designing liquid hydrogen fuel tanks, considering insulation, sizing, center of gravity, and power constraints. A lifecycle assessment evaluates greenhouse gas emissions and contrail formation effects for carbon footprint mitigation, while a cost analysis examines retrofit implementation consequences. A Cessna Citation 560XLS+ case study shows a 5% mass decrease for H2 combustion and a 0.4% mass decrease for the SOFC hybrid, at the tradeoff of removing three passengers. The lifecycle analysis of green hydrogen in aviation reveals a significant reduction in CO2 emissions for H2 combustion and SOFC systems, except for natural-gas-produced H2 combustion, when compared to Jet-A fuel. However, this environmental benefit is contrasted by an increase in fuel cost per passenger-km for green H2 combustion and a rise for natural-gas-produced H2 SOFC compared to kerosene. The results suggest that retrofitting aircraft with alternative fuels could lower carbon emissions, noting the economic and passenger capacity tradeoffs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-