Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Saturated fatty acids negatively affect musculoskeletal tissues in vitro and in vivo

Abstract

Fish oils rank among the world's most popular nutritional supplements and are purported to have numerous health benefits. Previous work suggested that fish oils increase collagen production; however, the effect of fish oils on musculoskeletal health is poorly understood. Further, the divergent effects of omega-3 (Ω3FA) and saturated fatty acids (SFA) remains poorly understood. We tested the effects of Ω3FA and SFAs on in vitro-engineered human ligament (EHL) function. EHLs were treated with bovine serum albumin (BSA)-conjugated eicosapentaenoic acid (EPA, 20:5(n-3)), palmitic acid (PA, 16:0), or a BSA control for 6 days. EPA did not significantly alter, whereas PA significantly decreased EHL function and collagen content. To determine whether this was an in vitro artifact, mice were fed a control or high-lard diet for 14 weeks and musculoskeletal mass, insulin sensitivity, and the collagen content, and mechanics of tendon and bone were determined. Body weight was 40 % higher on a HFD, but muscle, tendon, and bone mass did not keep up with body weight resulting in relative losses in muscle mass, tendon, and bone collagen, as well as mechanical properties. Importantly, we show that PA acutely decreases collagen synthesis in vitro to a similar extent as the decrease in collagen content with chronic treatment. These data suggest that Ω3FAs have a limited effect on EHLs, whereas SFA exert a negative effect on collagen synthesis resulting in smaller and weaker musculoskeletal tissues both in vitro and in vivo.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View