Skip to main content
Download PDF
- Main
Syllable-rate-adjusted-modulation (SRAM) predicts clear and conversational speech intelligibility
Published Web Location
https://doi.org/10.3389/fnhum.2024.1324027Abstract
Introduction
Objectively predicting speech intelligibility is important in both telecommunication and human-machine interaction systems. The classic method relies on signal-to-noise ratios (SNR) to successfully predict speech intelligibility. One exception is clear speech, in which a talker intentionally articulates as if speaking to someone who has hearing loss or is from a different language background. As a result, at the same SNR, clear speech produces higher intelligibility than conversational speech. Despite numerous efforts, no objective metric can successfully predict the clear speech benefit at the sentence level.Methods
We proposed a Syllable-Rate-Adjusted-Modulation (SRAM) index to predict the intelligibility of clear and conversational speech. The SRAM used as short as 1 s speech and estimated its modulation power above the syllable rate. We compared SRAM with three reference metrics: envelope-regression-based speech transmission index (ER-STI), hearing-aid speech perception index version 2 (HASPI-v2) and short-time objective intelligibility (STOI), and five automatic speech recognition systems: Amazon Transcribe, Microsoft Azure Speech-To-Text, Google Speech-To-Text, wav2vec2 and Whisper.Results
SRAM outperformed the three reference metrics (ER-STI, HASPI-v2 and STOI) and the five automatic speech recognition systems. Additionally, we demonstrated the important role of syllable rate in predicting speech intelligibility by comparing SRAM with the total modulation power (TMP) that was not adjusted by the syllable rate.Discussion
SRAM can potentially help understand the characteristics of clear speech, screen speech materials with high intelligibility, and convert conversational speech into clear speech.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%