Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana

Abstract

Two-pore channels (TPCs) comprise a subfamily (TPC1-3) of eukaryotic voltage- and ligand-gated cation channels with two non-equivalent tandem pore-forming subunits that dimerize to form quasi-tetramers. Found in vacuolar or endolysosomal membranes, they regulate the conductance of sodium and calcium ions, intravesicular pH, trafficking and excitability. TPCs are activated by a decrease in transmembrane potential and an increase in cytosolic calcium concentrations, are inhibited by low luminal pH and calcium, and are regulated by phosphorylation. Here we report the crystal structure of TPC1 from Arabidopsis thaliana at 2.87 Å resolution as a basis for understanding ion permeation, channel activation, the location of voltage-sensing domains and regulatory ion-binding sites. We determined sites of phosphorylation in the amino-terminal and carboxy-terminal domains that are positioned to allosterically modulate cytoplasmic Ca(2+) activation. One of the two voltage-sensing domains (VSD2) encodes voltage sensitivity and inhibition by luminal Ca(2+) and adopts a conformation distinct from the activated state observed in structures of other voltage-gated ion channels. The structure shows that potent pharmacophore trans-Ned-19 (ref. 17) acts allosterically by clamping the pore domains to VSD2. In animals, Ned-19 prevents infection by Ebola virus and other filoviruses, presumably by altering their fusion with the endolysosome and delivery of their contents into the cytoplasm.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View