Skip to main content
Download PDF
- Main
Towards semantically rich and recursive word learning models
Abstract
Current models of word learning focus on the mapping between words and their referents and remain mute with regard to conceptual representation. We develop a cross-situational model of word learning that captures word-concept mapping by jointly inferring the referents and underlying concepts for each word. We also develop a variant of our model that incorporates recursion, which entertains the idea that children can use learned words to aid future learning. We demonstrate both models’ ability to learn kinship terms and show that adding recursion into the model speeds acquisition
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%