Skip to main content
eScholarship
Open Access Publications from the University of California

Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study

  • Author(s): Mangold, C
  • Neogi, S
  • Donadio, D
  • et al.

Published Web Location

https://doi.org/10.1063/1.4960197
Abstract

© 2016 Author(s). Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ∼7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View