DDRE-31. MITOCHONDRIAL TRAFFICKING AS A TARGET FOR GBM THERAPY
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

DDRE-31. MITOCHONDRIAL TRAFFICKING AS A TARGET FOR GBM THERAPY

Abstract

Abstract: Glioblastoma (WHO Grade IV glioma) is the most aggressive brain cancer. The current standard of care treatment includes surgery, radiation, and chemotherapy. Tumor recurrence is almost inevitable as less than 50% of patients survive more than two years. The low survival rate poses a dire need to develop an effective therapy for GBM patients. GBM cells are resistant to treatment, as they activate their DNA damage response mechanisms to overcome the effects of radiation and temozolomide (TMZ) treatments. Recurrent tumors can arise from slow cycling and self-renewing stem/tumor-initiating cells resistant to radiation and TMZ. No second-line therapy was proven to prolong survival after TMZ failure. Magmas (Mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction) is a subunit of the TIM23 complex regulating precursor protein trafficking into the mitochondrial matrix. Magmas is encoded by pam16, known to be upregulated in human pituitary adenomas, prostate cancer and GBM. Previous studies have demonstrated that Magmas negatively regulates the stimulatory activity of Pam18, which in turn stimulates the ATPase activity of mitochondrial heat shock protein 70 (mtHsp70). No small molecules targeting Magmas are in clinical use. We developed a novel small molecule inhibitor (BT9) that has been specifically designed to inhibit Magmas binding to Pam18. BT9 induces apoptosis through cleavage of caspase-3, reduced mitochondrial respiration and glycolysis. Our recent findings also demonstrate that BT9 treatment reduced protein trafficking of Lon protease into the mitochondrial matrix. Pretreatment of glioma cells with BT9 sensitizes cells to radiation treatment and enhances the TMZ activity. BT9 can cross the blood-brain-barrier and improve survival in intracranial glioma PDX models. BT9 has potential therapeutic value by directly dysregulating mitochondrial function in GBM, enhancing radiation and chemotherapy response, and improving survival in a relevant animal model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View