- Main
SUMOylation Silences Heterodimeric TASK Potassium Channels Containing K2P1 Subunits in Cerebellar Granule Neurons
Abstract
The standing outward K(+) current (IKso) governs the response of cerebellar granule neurons to natural and medicinal stimuli including volatile anesthetics. We showed that SUMOylation silenced half of IKso at the surface of cerebellar granule neurons because the underlying channels were heterodimeric assemblies of K2P1, a subunit subject to SUMOylation, and the TASK (two-P domain, acid-sensitive K(+)) channel subunits K2P3 or K2P9. The heterodimeric channels comprised the acid-sensitive portion of IKso and mediated its response to halothane. We anticipate that SUMOylation also influences sensation and homeostatic mechanisms in mammals through TASK channels formed with K2P1.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-