- Main
Mechanisms for achieving high speed and efficiency in biomolecular machines
Published Web Location
https://doi.org/10.1073/pnas.1812149116Abstract
How does a biomolecular machine achieve high speed at high efficiency? We explore optimization principles using a simple two-state dynamical model. With this model, we establish physical principles-such as the optimal way to distribute free-energy changes and barriers across the machine cycle-and connect them to biological mechanisms. We find that a machine can achieve high speed without sacrificing efficiency by varying its conformational free energy to directly link the downhill, chemical energy to the uphill, mechanical work and by splitting a large work step into more numerous, smaller substeps. Experimental evidence suggests that these mechanisms are commonly used by biomolecular machines. This model is useful for exploring questions of evolution and optimization in molecular machines.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-