Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Mechanisms for achieving high speed and efficiency in biomolecular machines

Abstract

How does a biomolecular machine achieve high speed at high efficiency? We explore optimization principles using a simple two-state dynamical model. With this model, we establish physical principles-such as the optimal way to distribute free-energy changes and barriers across the machine cycle-and connect them to biological mechanisms. We find that a machine can achieve high speed without sacrificing efficiency by varying its conformational free energy to directly link the downhill, chemical energy to the uphill, mechanical work and by splitting a large work step into more numerous, smaller substeps. Experimental evidence suggests that these mechanisms are commonly used by biomolecular machines. This model is useful for exploring questions of evolution and optimization in molecular machines.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View