Skip to main content
Download PDF
- Main
Mathematical Modeling of Cation Contamination in a Proton-exchange Membrane
Abstract
Transport phenomena in an ion-exchange membrane containing both H+ and K+ are described using multicomponent diffusion equations (Stefan-Maxwell). A model is developed for transport through a Nafion 112 membrane in a hydrogen-pump setup. The model results are analyzed to quantify the impact of cation contamination on cell potential. It is shown that limiting current densities can result due to a decrease in proton concentration caused by the build-up of contaminant ions. An average cation concentration of 30 to 40 percent is required for appreciable effects to be noticed under typical steady-state operating conditions.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%