Skip to main content
Download PDF
- Main
Molecular classification of cancer with the 92-gene assay in cytology and limited tissue samples
Published Web Location
https://doi.org/10.18632/oncotarget.8449Abstract
Background
Detailed molecular evaluation of cytology and limited tissue samples is increasingly becoming the standard for cancer care. Reproducible and accurate diagnostic approaches with reduced demands on cellularity are an ongoing unmet need. This study evaluated the performance of a 92-gene assay for molecular diagnosis of tumor type/subtype in cytology and limited tissue samples.Methods
Clinical validation of accuracy for the 92-gene assay in limited tissue samples such as cytology cell blocks, core biopsies and small excisions was conducted in a blinded multi-institutional study (N = 109, 48% metastatic, 53% grade II and III). Analytical success rate and diagnostic utility were evaluated in a consecutive series of 644 cytology cases submitted for clinical testing.Results
The 92-gene assay demonstrated 91% sensitivity (95% CI [0.84, 0.95]) for tumor classification, with high accuracy maintained irrespective of specimen type (100%, 92%, and 86% in FNA/cytology cell blocks, core biopsies, and small excisions, respectively; p = 0.26). The assay performed equally well for metastatic versus primary tumors (90% vs 93%, p = 0.73), and across histologic grades (100%, 90%, 89%, in grades I, II, and III, respectively; p = 0.75). In the clinical case series, a molecular diagnosis was reported in 87% of the 644 samples, identifying 23 different tumor types and allowing for additional mutational analysis in selected cases.Conclusions
These findings demonstrate high accuracy and analytical success rate of the 92-gene assay, supporting its utility in the molecular diagnosis of cancer for specimens with limited tissue.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%