Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Role of vitamin D and calcium signaling in epidermal wound healing

Abstract

Purpose

This review will discuss the role of vitamin D and calcium signaling in the epidermal wound response with particular focus on the stem cells of the epidermis and hair follicle that contribute to the wounding response.

Methods

Selected publications relevant to the mechanisms of wound healing in general and the roles of calcium and vitamin D in wound healing in particular were reviewed.

Results

Following wounding the stem cells of the hair follicle and interfollicular epidermis are activated to proliferate and migrate to the wound where they take on an epidermal fate to re-epithelialize the wound and regenerate the epidermis. The vitamin D and calcium sensing receptors (VDR and CaSR, respectively) are expressed in the stem cells of the hair follicle and epidermis where they play a critical role in enabling the stem cells to respond to wounding. Deletion of Vdr and/or Casr from these cells delays wound healing. The VDR is regulated by co-regulators such as the Med 1 complex and other transcription factors such as Ctnnb (beta-catenin) and p63. The formation of the Cdh1/Ctnn (E-cadherin/catenin) complex jointly stimulated by vitamin D and calcium plays a critical role in the activation, migration, and re-epithelialization processes.

Conclusion

Vitamin D and calcium signaling are critical for the ability of epidermal and hair follicle stem cells to respond to wounding. Vitamin D deficiency with the accompanying decrease in calcium signaling can result in delayed and/or chronic wounds, a major cause of morbidity, loss of productivity, and medical expense.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View