Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Pulmonary preconditioning, injury, and inflammation modulate expression of the candidate tumor suppressor gene ECRG4 in lung

Abstract

Purpose

The human c2orf40 gene encodes a candidate tumor suppressor called Esophageal Cancer-Related Gene-4 (ECRG4) that is a cytokine-like epigenetically-regulated protein that is characteristically downregulated in cancer, injury, inflammation, and infection. Here, we asked whether ECRG4 gene expression is detectable in lung epithelial cells and if its expression changes with inflammation, infection, and/or protective preconditioning.

Materials and methods

We used immunoblotting, PCR, and quantitative PCR to measure ECRG4 and either inhalation anesthesia preconditioning, lipopolysaccharide injection, or laparotomy to modulate lung inflammation.

Results

Immunoblotting establishes the presence of the full-length 14 kDa ECRG4 peptide in mouse lung. Immunohistochemistry localizes ECRG4 to type l alveolar epithelial cells. Basal ECRG4 mRNA is greater than TNF-α, IL-1β, and IL-6 but following inflammatory lung injury, TNF-α, IL-1β, IL-6, and IL-10 are upregulated while ECRG4 gene expression is decreased. Similar findings are observed after an intravenous administration of lipopolysaccharide. In contrast, lung preconditioning with isoflurane anesthesia increases lung ECRG4 gene expression. Over-expression of ECRG4 in human lung epithelial cells in vitro decreases cell proliferation implying that a loss of ECRG4 in vivo would be permissive to cell growth.

Conclusions

This study supports the hypothesis that ECRG4 acts as a sentinel growth inhibitor in lung alveolar epithelial cells. Its downregulation by injury, infection, and inflammation and upregulation by preconditioning supports a role for ECRG4 in regulating the alveolar epithelium response to injury and inflammation. By extension, the findings support a functional consequence to its inhibition by promoter hypermethylation (i.e. lung cancer) and suggest potential benefits to its upregulation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View