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Abstract 
 
     We report the complete genome of Thermofilum pendens, a deep-branching, 

hyperthermophilic member of the order Thermoproteales within the archaeal kingdom 

Crenarchaeota.  T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a 

solfatara in Iceland.  It is an extracellular commensal, requiring an extract of 

Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic 

pathways for purines, most amino acids, and most cofactors are absent.  In fact T. 

pendens has fewer biosynthetic enzymes than obligate intracellular parasites.  T. pendens 

does not display other features common among obligate parasites and thus does not 

appear to be in the process of becoming a parasite.  It appears that T. pendens has adapted 

to life in an environment rich in nutrients.  T. pendens was known to utilize peptides as an 

energy source, but the genome reveals substantial ability to grow on carbohydrates.  T. 

pendens is the first crenarchaeote and only the second archaeon found to have a 

transporter of the phosphotransferase system.  In addition to fermentation, T. pendens 

may gain energy from sulfur reduction with hydrogen and formate as electron donors.  It 

may also be capable of sulfur-independent growth on formate with formate 

hydrogenlyase.  Additional novel features are the presence of a 

monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found 

outside of Methanosarcinales, and a presenilin-related protein.  Predicted highly 

expressed proteins do not include housekeeping genes, and instead include ABC 

transporters for carbohydrates and peptides, and CRISPR-associated proteins. 
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Introduction 
 
     Crenarchaeota is one of the two major divisions of the Archaea, and it is the least 

well-represented in terms of genome sequences.  Only six crenarchaeal complete 

genomes have been published so far, and three of these are from the genus Sulfolobus.  

Within the order Thermoproteales, only one organism has been completely sequenced so 

far, Pyrobaculum aerophilum, although several more species of Pyrobaculum, Caldivirga 

maquilingensis, and Thermoproteus tenax are currently being sequenced (23).  

Thermofilum pendens represents a deep branch within the order Thermoproteales, and the 

organism grows only in the presence of a fraction of the polar lipids of T. tenax (55), a 

property that has not been seen before in archaea.  Therefore, it was an attractive 

sequencing target.  We report here the genome sequence and analysis of the type strain 

Thermofilum pendens Hrk5. 

     T. pendens is an anaerobic, sulfur-dependent hyperthermophile isolated from a 

solfatara in Iceland.  It forms long thin filaments and may have an unusual mode of 

reproduction in which spherical bulges form at one end of the cell.  It requires complex 

media and a lipid extract from the related organism T. tenax for growth (55).  The 

unknown lipid may be a cellular component or may make sulfur more available to the 

cells.  Complex media such as tryptone or yeast extract are required for growth, and CO2 

and H2S are produced, similar to other anaerobic members of the Crenarchaeota and the 

euryarchaeal family Thermococcaceae.  The genome reveals an organism that appears to 

have lost many biosynthetic capabilities yet does not have a reduced genome size 

compared to other Crenarchaeota. 
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Materials and Methods 
 
     Frozen T. pendens Hrk5 cells were obtained from Dr. Karl Stetter.  Cells were 

resuspended in 0.25 M sucrose in TE buffer.  Sodium dodecyl sulfate was added to 1% 

concentration, and cells were lysed by three cycles of freezing and thawing.  Proteinase K 

was added to 50 µg/ml, and the lysate was incubated at 60°C for 30 minutes.  Undigested 

proteins were precipitated by addition of NaCl to 0.5 M concentration and removed by 

centrifugation.  Nucleic acids in the supernatant were precipitated by the addition of an 

equal volume of cold isopropanol and collected by centrifugation.  After digestion with 

RNAse A, the DNA was purified by successive extractions with phenol and 

phenol:chloroform and recovered by ethanol precipitation.  DNA was resuspended in TE 

buffer and sent to the Joint Genome Institute. 

     The genome of T. pendens was sequenced at the Joint Genome Institute (JGI) using a 

combination of 3kb, 6kb and 40kb (fosmid) DNA libraries.  All general aspects of library 

construction and sequencing performed at the JGI can be found at 

htt:://www.jgi.doe.gov/.  Draft assemblies were based on 21478 total reads.  All three 

libraries provided 11x coverage of the genome.  The Phred/Phrap/Consed software 

package (www.phrap.com) was used for sequence assembly and quality assessment (5-

7).  After the shotgun stage, reads were assembled with parallel phrap (High Performance 

Software, LLC).  Possible mis-assemblies were corrected with Dupfinisher (11) or 

transposon bombing of bridging clones (Epicentre Biotechnologies, Madison, WI).  Gaps 

between contigs were closed by editing in Consed, custom primer walk or PCR 

amplification (Roche Applied Science, Indianapolis, IN). A total of 465 additional 

reactions were necessary to close gaps and to raise the quality of the finished sequence. 

http://www.phrap.com/
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The sequences of T. pendens, consisting of one chromosome and one plasmid, can be 

accessed using the GenBank accession numbers NC_008698 and NC_008696 and the 

Genomes On Line Database accession number Gc00473.  Genes were identified using a 

combination of Critica (2) and Glimmer (4) followed by a round of manual curation. 

     Analysis of the T. pendens genome was carried out with the Integrated Microbial 

Genomes (IMG) system (27).  Protein families unique to T. pendens or missing from T. 

pendens but present in other Crenarchaeota were identified with the phylogenetic profiler 

in IMG.  Analysis of signal transduction was carried out using the MiST database (51).  

A cumulative GC-skew plot was generated with a 35 kb sliding window using 

GraphDNA (48). 

     Predicted highly expressed (PHX) genes were determined with the EMBOSS (38) 

programs cusp and cai.  The training set of PHX genes was compiled from Karlin et al. 

(16).  The genes with a codon adaptation index (CAI) in the top 5% were taken to be 

PHX genes. 

 
 
Results 
 
General features 
 
     The genome of T. pendens Hrk5 consists of a circular chromosome of 1.78 Mbp and a 

plasmid of 31,504 bp (Table 1).  The G+C percentage is 58%, higher than that of other 

Crenarchaeota.  1,923 genes were identified, of which 1,883 encode proteins.  The 

percentage of the genome devoted to encoding genes is 91%, slightly higher than for 

other sequenced Crenarchaeota.   About 59% of protein-coding genes begin with an AUG 

codon, 32% with a GUG, and 10% with UUG.  About 66% of protein-coding genes have 
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COG domains, and about 63% have Pfam domains, similar to other archaeal genomes.  

There is one copy of each ribosomal RNA.  T. pendens has the highest percentage of 

fusion genes among the Crenarchaeota.  Several proteins in T. pendens have not been 

found in Crenarchaeotes or in archaea before (Table 2) and several proteins found in all 

other crenarchaeota are missing from the T. pendens genome (Table 3). 

     The plasmid is predicted to encode 52 proteins, of which only two have similarity to 

proteins in the GenBank nonredundant protein database.  Tpen_1849 is similar to a T. 

pendens chromosomal protein of unknown function (Tpen_0735), and Tpen_1875 is a 

predicted helicase.  In addition, Tpen_1891 is predicted to be a site-specific recombinase 

(COG4974).  The function of the plasmid and whether or not it is beneficial to the host is 

currently unknown. 

     Cumulative GC-skew analysis of the T. pendens genome was used to identify the 

potential origin(s) of replication (9).  A global minimum was located at position 488,884 

which is near a 478 bp intergenic region between positions 487,890 and 488,368.  The 

intergenic spacer contains several repetitive sequences similar to conserved crenarchaeal 

origin recognition boxes (39). 

     No repetitive elements were found when the ISfinder database (46) was searched with 

the T. pendens coding sequences.  However, within a 100,000 bp section of the genome 

there are twelve stretches of clustered regularly interspaced short palindromic repeat 

(CRISPR) elements interspersed with protein-coding genes.  Among the 97 predicted 

highly expressed (PHX) genes (supplementary table 1) there are 6 CRISPR-associated 

proteins (Tpen_1263, Tpen_1287, Tpen_1288, Tpen_1316, Tpen_1342, Tpen_1356).  

Interestingly, a group of seven consecutive genes (Tpen_1287-Tpen_1293) including two 
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CRISPR-associated proteins is PHX.  While other thermophilic archaea have similar 

numbers of CRISPR-associated proteins within their genomes, most do not have 

CRISPR-associated proteins as PHX genes, although Staphylothermus marinus and P. 

aerophilum do (4 and 2 genes respectively).  However T. pendens has the highest number 

of CRISPR-associated genes as PHX genes, and the highest percentage.  Thus, protection 

against viral infection appears to be a major priority for T. pendens.  Crenarchaeota from 

hot spring environments are known to host a wide variety of viruses with distinctive 

morphologies (reviewed in 35). 

 
Central metabolism 
 
     T. pendens contains complete glycolysis and gluconeogenesis pathways.    

Glyceraldehyde 3-phosphate:ferredoxin oxidoreductase, found in some archaeal 

hyperthermophiles as an alternative step in glycolysis (30), is not present in T. pendens.  

Phosphoenolpyruvate (PEP) synthase, used as the last step in glycolysis in Thermococcus 

kodakaraensis (14), is present in T. pendens (Tpen_0588).  PEP synthase could be 

involved in glycolysis and/or in gluconeogenesis.  Starch synthesis and utilization 

pathways are also present. 

     Pentoses are synthesized through the ribulose monophosphate pathway common in 

archaea (reviewed in 17).  T. pendens encodes two ribose 5-phosphate isomerases, one 

RpiA-type (Tpen_0327) and one RpiB-type (Tpen_1241).  This is the first time an RpiB 

has been found in archaea.  The RpiB is adjacent to uridine phosphorylase (Tpen_1240) 

suggesting a function in nucleoside utilization.  Under conditions in which 

ribonucleosides are present in excess, RpiB may be involved in conversion of ribose 
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phosphate to hexoses through the ribulose monophosphate pathway, a reversal of the 

pathway from its predicted function in archaea. 

     ATP can be generated from pyruvate through the consecutive action of 

pyruvate:ferredoxin oxidoreductase (PFOR) and ADP-forming acetyl-CoA synthase 

similar to Thermococcales (26).  The T. pendens PFOR (Tpen_0571-0574) is similar to 

the characterized Thermotoga maritima enzyme (18).  In Thermococcales and 

Crenarchaeota, ADP-forming acetyl-CoA synthase is split into two subunits, alpha and 

beta.  T. pendens contains one alpha subunit (Tpen_0336), one beta subunit (Tpen_0109), 

and one protein with both alpha and beta subunits fused together (Tpen_0602).  Two 

AMP-forming acyl-CoA synthases are also present (Tpen_0893, Tpen_1611).  T. 

pendens has four other enzymes similar to pyruvate:ferredoxin oxidoreductase 

(Tpen_0540-0543, Tpen_0781-0782, Tpen_0856-0857, Tpen_1455-1456), and these are 

likely to be involved in amino acid degradation pathways in which the amino acid is first 

converted to the 2-ketoacid, then to the acyl-CoA, and finally to an acid, with ATP 

generated by acyl-CoA synthases (26).  Four aldehyde:ferredoxin oxidoreductases are 

also present (Tpen_0094, Tpen_0176, Tpen_1413, Tpen_1817), and these could be 

involved in peptide fermentation (1).  The 2-oxoacid oxidoreductases produce aldehydes 

which are then converted to acids.  Reduced ferredoxin is produced but there is no ATP 

production by this pathway. 

     T. pendens appears to assimilate glycerol.  There is a glycerol kinase (Tpen_1128) 

adjacent to subunit A of glycerol 3-phosphate dehydrogenase (Tpen_1127).  Next to 

these are three genes with similarity to subunits B, C, and D of succinate dehydrogenases 

(Tpen_1124-1126).  A gene encoding subunit A of succinate dehydrogenase is not found 
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within the genome.  It appears that the three succinate dehydrogenase-related subunits 

along with the glycerol 3-phosphate dehydrogenase subunit A may form a novel glycerol 

3-phosphate dehydrogenase that may transfer electrons to a quinone or other acceptor. 

     Unlike most of the sequenced Crenarchaeota, T. pendens has ribulose 1,5-

bisphosphate carboxylase (Rubisco, Tpen_1227).  It also has the recently discovered 

enzymes involved in conversion of the ribose phosphate group of AMP to ribulose 1,5-

bisphosphate (43): AMP phosphorylase (Tpen_0093) and ribose-1,5-bisphosphate 

isomerase (Tpen_0384).  Under conditions in which acetate is incorporated into the 

gluconeogenesis pathway, the AMP-forming acetyl-CoA synthetase and 

phosphoenolpyruvate synthase could produce substantial AMP.  The T. pendens AMP-

forming acetyl-CoA synthetase (Tpen_0893) has very high similarity to the P. 

aerophilum characterized enzyme (3).  A large amount of AMP may also be generated by 

ribose-phosphate pyrophosphokinase, required for pyrimidine synthesis, and 

phosphoribosyltransferases. 

 
Biosynthesis 
 
     T. pendens is known to require an extract of T. tenax for growth.  While the specific 

compound required from T. tenax could not be identified, the genome reveals a vast 

reduction in its ability to synthesize basic metabolites.  T. pendens appears to be 

dependent on its environment for purines, most cofactors, and most amino acids.  A list 

of 125 COGs involved in synthesis of nucleobases, amino acids, and cofactors was 

compiled (supplementary table 2).  COGs encoding archaeal biosynthetic enzymes were 

included where they are known.  The presence of these COGs in all complete bacterial 

and archaeal genomes was determined using the function profile feature in IMG.  T. 
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pendens possesses only 11 of these COGs.  The only organisms with fewer of this COG 

set were obligate parasites or commensals.  In fact some obligate parasites, such as 

Rickettsia species, have greater biosynthetic capabilities than T. pendens. 

     While it is possible that T. pendens has different pathways for metabolite synthesis or 

has many enzymes replaced through nonorthologous gene displacement, this is unlikely 

to account for the lack of biosynthetic enzymes because other Crenarchaeota have 

recognized pathways for basic metabolites.  For example, all Crenarchaeota except for T. 

pendens have homologs of the pyridoxine biosynthesis genes PDX1 and PDX2 (yaaD 

and yaaE in Bacillus subtilis) and the bifunctional coenzyme A biosynthetic enzyme 

phosphopantothenoylcysteine synthetase/decarboxylase.  Table 3 lists the COGs missing 

from T. pendens that are found in all other sequenced Crenarchaeota.  The top nine of 

these COGs are involved in pyridoxine, coenzyme A, riboflavin, ubiquinone, and 

thiamine biosynthesis.  In addition, most Crenarchaeota have homologs of several heme 

biosynthetic enzymes, but T. pendens lacks these.  They are not found in Table 3 because 

they are also missing from the Staphylothermus marinus genome.  Also COG1731, 

archaeal riboflavin synthase, is not found in Table 3 because it is missing from both T. 

pendens and Cenarchaeum symbiosum; however, C. symbiosum has the bacterial-type 

riboflavin synthase (COG0307) but T. pendens lacks both the bacterial and archaeal 

enzymes. 

     In accordance with the predicted lack of biosynthetic capacity, T. pendens is the only 

Crenarchaeote to have a bioY family biotin transporter and a riboflavin transporter (see 

Table 2).  In addition T. pendens has an expansion of ABC transporters related to those 

involved in cobalt uptake.  While most Crenarchaeota have 0-2 representatives from this 
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family, T. pendens has 7.  One of these transporters has an additional membrane protein 

related to B. subtilis YkoE, and such transporters are predicted to transport the thiamine 

precursor hydroxymethylpyrimidine (40). 

     T. pendens has genes for limited amino acid synthesis.  There is a putative cysteine 

synthase (Tpen_1605) related to a characterized A. pernix enzyme (34), but no serine 

acetyltransferase.  Probably, like A. pernix, T. pendens uses O-phosphoserine rather than 

O-acetylserine as the intermediate in cysteine synthesis.  Cysteine synthesis may have 

been preserved in T. pendens so that cysteine can help to protect the cell against oxidative 

stress, as is thought to occur in some parasitic protists (reviewed in 31). 

     Glutamine can be synthesized from glutamate on its tRNA (Tpen_0360-0361), and 

also by a cytosolic glutamine synthase (Tpen_1089).  Cytosolic glutamine synthesis has 

probably been preserved for its role as a nitrogen donor.  T. pendens has six proteins with 

glutamine amidotransferase domains including CTP synthase (Tpen_1163) and 

glucosamine 6-phosphate synthetase (Tpen_0085, Tpen_1094).  Asparagine can be 

synthesized by a tRNA synthetase-related, archaeal asparagine synthetase (Tpen_1140; 

41). 

     T. pendens has a methionine synthase (Tpen_1819) but no homoserine biosynthesis 

genes, thus it can probably not make methionine de novo, but it can recycle homoserine 

resulting from S-adenosylmethionine-dependent methylation reactions.  Interestingly T. 

pendens has genes related to monomethylamine and trimethylamine methyltransferases 

from Methanosarcinales (Tpen_1211, Tpen_1467).  The T. pendens monomethylamine 

methyltransferase is related to the Methanosarcina enzymes, and this is the first time this 

protein family has been found outside the Methanosarcinales.  Both putative 
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methyltransferases are adjacent to corrinoid proteins (Tpen_1212, Tpen_1468), 

supporting their function as methyltransferases.  Where the Methanosarcina proteins have 

pyrrolysine residues, T. pendens has leucine in both proteins.  The methyl groups 

transferred from methylamines could be used to recycle methionine after methylation 

reactions. 

     T. pendens can synthesize pyrimidines de novo but not purines.  Carbamoyl phosphate 

for pyrimidine synthesis is generated by carbamate kinase (Tpen_0172), not by 

carbamoyl phosphate synthase, similar to P. furiosus (52).  There are a variety of 

phosphorylases and phosphoribosyltransferases that could be used for salvage of bases.  

In addition T. pendens has an ORF (Tpen_1649) with 66% similarity to A. pernix 

APE0012, which is a broad-range nucleoside kinase as well as a phosphofructokinase 

(12), thus nucleosides may also be salvaged.  No transporters belonging to known 

families of nucleobase or nucleoside transporters could be identified in the genome. 

     T. pendens appears to be able to synthesize phospholipids de novo.  It may have a 

modified mevalonate pathway as predicted for Methanocaldococcus jannaschii 

(Grochowski et al., 2006) as it has a homolog of the MJ0044 protein which was shown to 

be an isopentyl phosphate kinase (Tpen_0607).  It has the enzymes for synthesis of sn-

glycerol 1-phosphate (Tpen_1231) and geranylgeranyl diphosphate (Tpen_0606) and for 

attaching the geranylgeranyl groups to glycerol 1-phosphate (Tpen0633, Tpen_0636, 

Tpen_1449).  Like many archaea it has only one identifiable CDP-alcohol 

phosphatidyltransferase (Tpen_0218), and this is most closely related to 

archaetidylinositol synthases.  Myo-inositol-1-phosphate synthase is present 

(Tpen_1660).  It is unknown whether T. pendens makes additional phospholipids. 
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Carbohydrate metabolism and transport 
 
     T. pendens requires a complex growth medium such as yeast extract, tryptone, or 

gelatin, and sucrose stimulates growth (55).  It was concluded that T. pendens grows 

mainly be peptide fermentation.  While T. pendens does have enzymes for amino acid 

degradation, the genome reveals that sugars and sugar polymers may also be important 

growth substrates for this organism. 

     One source of evidence that carbohydrates are important growth substrates is the set of 

transporters encoded in the genome.  T. pendens encodes 8 ABC transporters of family 1, 

which are involved in sugar uptake (Tpen_1055-1057, Tpen_1149-1152, Tpen_1174-

1177, Tpen_1255-1257, Tpen_1451-1453, Tpen_1547-1550, Tpen_1588-1590, 

Tpen_1617-1619).  Within the archaea, only Haloarcula marismortui possesses as many 

family 1 ABC transporters.  T. pendens also has one ABC transporter from family 2, 

likely to be involved in sugar uptake (Tpen_1208-1210).  The only other family 2 ABC 

transporter in the archaea is in Sulfolobus acidocaldarius.  One of the four family 5 ABC 

transporters in T. pendens (Tpen_1676-1680) is similar to a P. furiosus cellobiose 

transporter (19) and a T. maritima transporter for mannobiose (TM1223; 32).  Two 

members of the glycoside-pentoside-hexuronide (GPH): cation symporter family are also 

present (Tpen_1599, Tpen_1831). 

     T. pendens is the only sequenced crenarchaeote to have the phosphotransferase system 

(PTS) for carbohydrate uptake (see Table 2).  The only other sequenced archaeon to have 

a PTS transporter is H. marismortui.  Haloquadratum walsbyi has Enzyme I and HPr 

proteins from the PTS, but it does not have identifiable PTS transporters.  A phylogenetic 

tree of Enzyme I shows that the T. pendens and halophile proteins are not closely related, 
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suggesting they were independently acquired through separate lateral transfer events (not 

shown).  T. pendens Enzyme I is adjacent to a predicted N-acetylglucosamine 6-

phosphate deacetylase, suggesting that N-acetylglucosamine may be the substrate for this 

transporter.   

     T. pendens has a set of 15 glycosyl hydrolases, about the same number as Sulfolobus 

species, and greater than other Crenarchaeota.  There are several genes involved in starch 

utilization.  One cluster of genes encoding two glycosyl hydrolases and an ABC 

transporter (Tpen_1451-1454, 1458) is similar to a cluster from Thermococcus sp. B1001 

involved in extracellular formation of cyclomaltodextrins, transport of 

cyclomaltodextrins into the cell, and intracellular degradation of the cyclomaltodextrins 

(13).  In addition, there is an alpha-glucosidase (Tpen_1511) similar to the characterized 

NAD+-dependent T. maritima enzyme (37). 

     Cellulose may also be utilized by T. pendens.  There is a secreted family 12 glycosyl 

hydrolase (Tpen_1681) with weak similarity to cellulases as well as an ABC transporter 

with high similarity to a characterized cellobiose transporter from P. furiosus 

(Tpen_1676-1680; 19).  Cellobiose and larger oligosaccharides may be broken down by 

an intracellular beta-glucosidase (Tpen_1494). 

     Sucrose stimulates growth of T. pendens but does not serve as the sole energy source 

(55).  The enzymes involved in sucrose metabolism can not be identified from the 

genome sequence.  No beta-fructofuranosidase (invertase) or sucrose phosphorylase can 

be identified, and there is no homolog of PF0132, which encodes the invertase purified 

from P. furiosus (22). 
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     Three glycosidases (Tpen_1511, Tpen_1269, Tpen_1458) and three ABC transporter-

associated sugar-binding proteins (Tpen_1055, Tpen_1208, Tpen_1257) are among the 

PHX genes of T. pendens, providing further evidence of the importance of carbohydrate 

metabolism.  Subunits of two peptide ABC transporters are also PHX genes (Tpen_1635-

1636, Tpen_1638, Tpen_1245, Tpen_1247-1249).  This reflects the need of T. pendens to 

obtain many amino acids from external sources and the utilization of peptides for energy. 

 
Electron transport 
 
     T. pendens requires sulfur for growth and produces H2S, and some of the potential 

catalysts for this metabolism can be identified in the genome sequence.  T. pendens does 

not have a hydrogenase related to sulfhydrogenase and hydrogenase II of P. furiosus, 

which reduce sulfur as well as protons (25).  It also does not possess a sulfide 

dehydrogenase (24).  There is a homolog (Tpen_0143, 48% identity, 66% similarity) of 

the recently identified CoA-dependent NADPH:sulfur oxidoreductase from P. furiosus 

(45).  However T. pendens does not have the mbx protein complex that is predicted to 

transfer electrons from ferredoxin to NADPH.  Also T. pendens does not have a homolog 

of bacterial ferredoxin-NADP+ reductases (COG1018), so the pathway for recycling 

ferredoxin is unknown.  T. pendens has a large set of adjacent genes (Tpen_1070-

Tpen_1088) with similarity to NADH dehydrogenases and membrane bound 

hydrogenases.  This cluster may encode one or more multisubunit enzymes that oxidize 

ferredoxin and transfer the electrons to NADP, a quinone, or another electron carrier. 

     T. pendens has an operon (Tpen_1121-Tpen_1123) similar to the psrABC genes of the 

polysulfide reductase from Wolinella succinogenes (20).  The protein similarity is weak, 

but the three proteins in the T. pendens operon belong to the same protein families as the 
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polysulfide reductase subunits.  The A subunit is predicted by ProSite to have a twin-

arginine signal peptide, so the enzyme probably reduces its substrate extracellularly.   

     A substantial amount of formate may be produced by fermentative organisms in the 

environments in which T. pendens lives, and T. pendens appears to have two pathways 

for utilizing formate.  Like P. aerophilum and Hyperthermus butylicus, T. pendens has a 

three-subunit, membrane-bound, molybdopterin-dependent formate dehydrogenase.  The 

alpha subunit has a predicted twin arginine signal peptide, so the topology of the enzyme 

is likely to be similar to the solved structure of E. coli formate dehydrogenase N with 

formate oxidation occurring outside the cell (reviewed in 15).  This enzyme likely 

channels electrons from formate to a quinone or other carrier and then to sulfur as the 

final electron acceptor. 

     T. pendens is the only Crenarchaeote to have a formate transporter (Tpen_0191).  The 

transporter is found adjacent to a putative operon (Tpen_0190-Tpen_0178) with high 

similarity to E. coli hydrogenase 4. In E. coli, hydrogenase 4 forms part of the formate 

hydrogenlyase complex which oxidizes formate and produces hydrogen under conditions 

in which no electron acceptors other than protons are present.  The T. pendens operon 

contains a formate dehydrogenase alpha subunit, providing strong evidence that this 

operon encodes formate hydrogenlyase.  The formate dehydrogenase protein does not 

have a signal peptide, suggesting that formate oxidation occurs in the cytoplasm as for 

the E. coli complex (reviewed in 44).  Formate hydrogenlyase contributes to the 

generation of a proton gradient in two ways: by using protons from inside the cell to 

make H2, which then diffuses out of the cell, and under some conditions by pumping 

protons out of the cell (Hakobyan et al., 2005).  This enzyme complex is expressed in E. 
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coli only when no electron acceptors are present, suggesting that T. pendens may use this 

pathway when sulfur is scarce. 

     T. pendens may also use hydrogen as an electron donor as it contains genes 

(Tpen_0591-0594) similar to the four subunits of a membrane-bound uptake hydrogenase 

from Acidianus ambivalens (21).  The A. ambivalens hydrogenase is predicted to use a 

quinone to transfer electrons from hydrogen to sulfur.  This type of pathway is common 

among archaeal autotrophs, and in T. pendens it may supplement the energy derived from 

peptides and sugars. 

 
Signal transduction 
 
     Archaea have significantly fewer signal transduction systems than bacteria. On 

average, 2.63% of archaeal proteomes and 5.4% of bacterial proteomes consist of signal 

transduction proteins (51). Moreover, it has been shown previously that archaeal signal 

transduction utilizes a substantially reduced repertoire of sensory (input) and regulatory 

(output) domains (50). The median level of archaeal, one-component systems per genome 

is roughly 50 times greater than that of two-component systems, and the majority of these 

systems regulate gene expression at the transcriptional level (51). Two-component 

systems have only been found in Euryarchaeota and appear to have been laterally 

transferred from bacteria. In general, crenarchaeal species have fewer signal transduction 

systems (only 0.7% of the proteome) than Euryarchaeotes. 

     The T. pendens genome contains 45 one-component systems – regulatory proteins that 

contain one or more sensory domains (50) – that comprise 2.4% of its proteome. This 

percentage is over three times as high as the average for Crenarchaeota.  Thirty-one 

(69%) of these are located in operons containing predominantly enzymatic genes and are 
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predicted to regulate their transcription in response to environmental and intracellular 

signals.  Interestingly, T. pendens possesses three families of transcription regulators that 

have not previously been found in Crenarchaeota (Table 2).  T. pendens contains more 

PadR domains than any other Crenarchaeal species, possibly indicating a high level of 

phenolic acid metabolism. Unlike all other Crenarchaeotes, T. pendens does not have a 

member of the fur family, which is responsible for metal-ion uptake, although it does 

possess an iron-dependent repressor (Tpen_0973), which is positioned beside an iron 

transporter. 

 
Presenilin 
 
     A protein belonging to the presenilin family is present in the T. pendens genome 

(Tpen_0870).  In eukaryotes presenilin is an integral membrane protease and part of the 

gamma-secretase complex (54).  Mutations in presenilin cause it to cut amyloid precursor 

peptide (APP) in a different place and generate APP forms that are more likely to 

aggregate and form plaques.  A family of proteins weakly related to presenilins, known as 

presenilin homologs, has been identified in eukaryotes and archaea (8, 36).  The T. 

pendens protein and a related protein from P. aerophilum are not closely related to these 

presenilin homologs; they represent a new subfamily of presenilins.  These crenarchaeal 

proteins are about 150 amino acids shorter than the mammalian presenilins, lacking 

hydrophilic regions at the N-terminus and in an internal loop (Figure 1).  They contain 7-

9 predicted transmembrane helices and the conserved YD, LGXGD, and PALP motifs.  

The gamma-secretase complex includes three other proteins, but none of these are present 

in T. pendens or P. aerophilum.  Characterization of this new subfamily of presenilins 

may shed light on the structure and function of the eukaryotic proteins. 
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Discussion 
 
     The genome sequence of T. pendens shows a loss of biosynthetic pathways to a degree 

that it is no longer a free-living organism, and has become a commensal, dependent on 

another archaeon.  Along with this lack of biosynthesis, several nutrient transporters that 

are not found in any other crenarchaeote are present in T. pendens.  A lack of biosynthetic 

capability and an increase in nutrient transport capability are features commonly found in 

obligate parasites (42).  However T. pendens lacks other features of obligate intracellular 

parasites, such as genome size reduction (33, 53), loss of signal transduction and DNA 

repair proteins (29), increased percentage of A-T base pairs (28, 53), and decreased 

number of fusion proteins (Mavromatis, K. and Kyrpides, N. C., unpublished results).  It 

is hypothesized that one reason genome size reduction in intracellular bacteria occurs 

because there is no possibility for lateral gene transfer from other bacteria (47), however 

T. pendens does have the opportunity to be exposed to DNA of other bacteria and 

archaea, and this may help to explain its maintenance of a normal genome size.  Also 

since T. pendens is an extracellular rather than intracellular symbiont, it may require a 

larger genome to deal with environmental perturbations.  T. pendens does not appear to 

be parasitic, as it is not known to cause harm to another organism.  However, it is limited 

to growth in nutrient-rich environments, to the point of depending on a specific organism 

for an essential nutrient.  This type of dependence may be one reason why many 

microbes are not able to be cultivated. 

     Predicted highly expressed genes in archaea are generally found to be housekeeping 

genes (16), however this is not the case in T. pendens.  Surprisingly T. pendens PHX 

genes contain many CRISPR associated genes and ABC transporters for carbohydrates 
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and peptides.  These findings suggest that T. pendens is constantly under attack from 

viruses in its environment.  The large number of CRISPR elements also supports this 

conclusion.  The presence of peptide ABC transporters as PHX genes suggests that T. 

pendens places a higher priority on nutrient acquisition than on maximization of cell 

growth and division, which is in agreement with its lack of biosynthetic pathways for 

most amino acids and cofactors. 
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Table 1.  General statistics 

 
Chromosome size (bp) 1781889 
Chromosome G+C (bp) 1027538 (57.6%) 
Plasmid size (bp) 31504 
Plasmid G+C (bp) 17813 (56.5%) 
Total genome size (bp) 1813393 
Total genome G+C (bp) 1045351 (57.6%) 
Total genes 1923 
RNA genes 40 (2.1%) 
Protein-coding genes 1883 (97.9%) 
Genes with function prediction 1170 (60.8%) 
Genes in ortholog clusters 1541 (80.1%) 
Genes in paralog clusters 805 (41.9%) 
Genes assigned to COGs 1264 (65.7%) 
Genes assigned Pfam domains 1209 (62.9%) 
Genes with signal peptides 134 (7.0%) 
Genes with transmembrane helices 437 (22.7%) 
Fusion genes 79 (4.11%) 
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Table 2.  Unique genes in T. pendens with COG hits 
 

CDS COG Function 
COGs not found in any other sequenced Archaea 
Tpen_1241 0698 Ribose 5-phosphate isomerase rpiB 
Tpen_1297 3525 Glycosyl hydrolase family 20 
Tpen_1097 3444 Phosphotransferase system IIB subunit 
Tpen_1100 3715 Phosphotransferase system IIC subunit 
Tpen_1100 3716 Phosphotransferase system IID subunit 
Tpen_1090 4821 Phosphosugar binding protein, SIS domain 
COGs not found in any other sequenced Crenarchaeota 
Tpen_1155 1554 Glycoside hydrolase family 65 
Tpen_1624 3836 2-Dehydro-3-deoxyglucarate aldolase 
Tpen_0948 0207 Thymidylate synthase 
Tpen_0017 3613 Nucleoside 2-deoxyribosyltransferase 
Tpen_1467 5598 Trimethylamine:corrinoid methyltransferase 
Tpen_1211  Monomethylamine:corrinoid methyltransferase 
Tpen_1092 1080 Phosphoenolpyruvate-protein kinase (Enzyme I of PTS) 
Tpen_1091 1925 Phosphotransferase system HPr protein 
Tpen_1098 2893 Phosphotransferase system IIA component 
Tpen_1491 1268 Biotin transporter bioY 
Tpen_0929 3601 Riboflavin transporter 
Tpen_0191 2116 Formate transporter 
Tpen_1479 2060 Potassium-transporting ATPase, A chain 
Tpen_1480 2216 Potassium-transporting ATPase, B chain 
Tpen_1481 2156 Potassium-transporting ATPase, c chain 
Tpen_0197 
Tpen_1427 

0474 Cation transport ATPase (P-type ATPase) 

Tpen_1010 1327 Predicted transcriptional regulator, Zn ribbon and ATP-cone 
Tpen_1048 1510 Predicted transcriptional regulator 
Tpen_0270 4190 Predicted transcriptional regulator 
Tpen_0889 2150 Predicted regulator of amino acid metabolism, ACT domain 
Tpen_0253 2229 Predicted GTPase 
Tpen_1457 1773 Rubredoxin 
Tpen_1536 1811 Uncharacterized membrane protein, DUF554 
Tpen_0198 2047 Uncharacterized protein, ATP-grasp superfamily 
Tpen_0838 
Tpen_1835 

2164 Uncharacterized conserved protein, DUF369 

Tpen_1118 2908 Uncharacterized conserved protein 
Tpen_0381 3863 Uncharacterized relative of cell wall-associated hydrolases 
Tpen_1090 4821 Uncharacterized protein with phosphosugar binding domain 
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Table 3.  Genes present in all Crenarchaeota except T. pendens with COG hits 
 

COG Function 
0214 Pyridoxine biosynthesis enzyme (yaaD) 
0311 Glutamine amidotransferase involved in pyridoxine synthesis (yaaE) 
0413 Ketopantoate hydroxymethyltransferase 
0452 Phosphopantothenoylcysteine synthetase/decarboxylase 
0108 3,4-dihydroxy-2-butanone 4-phosphate synthase 
1985 Pyrimidine reductase, riboflavin biosynthesis 
0054 Riboflavin synthase beta chain 
0163 3-polyprenyl-4-hydroxybenzoate decarboxylase 
1635 Flavoprotein involved in thiazole biosynthesis 
0112 Glycine/serine hydroxymethyltransferase 
0189 Glutathione synthase/Ribosomal protein S6P modification enzyme/L-2-

aminoadipate N-acetyltransferase 
0105 Nucleoside diphosphate kinase 
2046 Sulfate adenylyltransferase 
1650 Uncharacterized protein conserved in archaea 
1701 Uncharacterized protein conserved in archaea 
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Figure 1.  Alignment of presenilins from human and Thermoproteales.  Alignment was 

carried out with Clustal W (49) and shaded with GeneDoc 

(http://www.nrbsc.org/gfx/genedoc/index.html). 

  




