Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Evolution of the facial skin microbiome during puberty in normal and acne skin

Published Web Location

https://doi.org/10.1111/jdv.18616
Abstract

Background

The composition of the skin microbiome varies from infancy to adulthood and becomes most stable in adulthood. Adult acne patients harbour an 'acne microbiome' dominated by specific strains of Cutibacterium acnes. However, the precise timing of skin microbiome evolution, the development of the acne microbiome, and the shift to virulent C. acnes strain composition during puberty is unknown.

Objectives

We performed a cross-sectional pilot study in a paediatric population to understand how and when the skin microbiome composition transitions during puberty and whether a distinct 'acne microbiome' emerges in paediatric subjects.

Methods

Forty-eight volunteers including males and females, ages 7-17 years, with and without acne were enrolled and evaluated for pubertal development using the Tanner staging criteria. Sebum levels were measured, and skin microbiota were collected by sterile swab on the subject's forehead. DNA was sequenced by whole genome shotgun sequencing.

Results

A significant shift in microbial diversity emerged between early (T1-T2) and late (T3-T5) stages of puberty, coinciding with increased sebum production on the face. The overall relative abundance of C. acnes in both normal and acne skin increased during puberty and individual C. acnes strains were uniquely affected by pubertal stage and the presence of acne. Further, an acne microbiome signature associated with unique C. acnes strain composition and metabolic activity emerges in late puberty in those with acne. This unique C. acnes strain composition is predicted to have increased porphyrin production, which may contribute to skin inflammation.

Conclusions

Our data suggest that the stage of pubertal development influences skin microbiome composition. As children mature, a distinct acne microbiome composition emerges in those with acne. Understanding how both puberty and acne influence the microbiome may support novel therapeutic strategies to combat acne in the paediatric population.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View