Investigation of the Active Sites of Rhodium Sulfide for Hydrogen Evolution/Oxidation Using Carbon Monoxide as a Probe
Published Web Location
http://pubs.acs.org/articlesonrequest/AOR-h5HAPX9d7HFCr5CrxBi8Abstract
Carbon monoxide (CO) was observed to decrease the activity for hydrogen evolution, hydrogen oxidation, and H2-D2 exchange on rhodium sulfide, platinum, and rhodium metal. The temperature at which the CO was desorbed from the catalyst surface (detected by recovery in the H2-D2 exchange activity of the catalyst) was used as a descriptor for the CO binding energy to the active site. The differences in the CO desorption temperature between the different catalysts showed that the rhodium sulfide active site is not metallic rhodium. Using density functional theory, the binding energy of CO to the Rh sites in rhodium sulfide is found comparable to the binding energy on Pt. Coupled with experiment this supports the proposition that rhodium rather than sulfur atoms in the rhodium sulfide are the active site for the hydrogen reaction. This would indicate the active sites for hydrogen evolution/oxidation as well as oxygen reduction (determined by other groups using X-ray absorption spectroscopy) may be the same.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.