Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Botulinum Neurotoxin Type A Directly Affects Sebocytes and Modulates Oleic Acid-Induced Lipogenesis

Abstract

Excess sebum (seborrhea) results in oily skin and is associated with large pore size and acne. Studies in healthy, seborrheic volunteers have reported that intradermal injection of commercial preparations of botulinum neurotoxin type A (BoNT/A) (onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA) reduced sebum production, and thus, skin oiliness and pore size. The mechanism for these effects has not been fully elucidated; however, several theories involving direct or indirect effects of BoNT/A on neuronal and/or dermal cells (e.g., sebocytes) have been proposed. In the present study, we evaluated the direct effect of native research grade BoNT/A complex, a commercial preparation of BoNT/A (onabotA), and BoNT/A variants on sebocyte lipogenesis using an in vitro sebocyte cell model. We show that picomolar concentrations of BoNT/A (BoNT/A complex: half maximal effective concentration [EC50] = 24 pM; BoNT/A 150 kDa: EC50 = 34 pM) modulate sebocyte lipogenesis and reduce oleic acid-induced sebocyte differentiation, lipogenesis, and holocrine-like secretion. Comparative studies with the binding domain of BoNT/A, which lacks enzymatic activity, show that this effect is independent of the enzymatic activity of BoNT/A and likely occurs via sebocyte cell surface receptors (e.g., fibroblast growth factor receptors). Overall, these results shed light on the potential mechanism of action and rationale for use of BoNT/A for treatment of sebum-related conditions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View