Noise and detectivity limits in organic shortwave infrared photodiodes with low disorder
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Noise and detectivity limits in organic shortwave infrared photodiodes with low disorder

Abstract

Abstract: To achieve high detectivity in infrared detectors, it is critical to reduce the device noise. However, for non-crystalline semiconductors, an essential framework is missing to understand and predict the effects of disorder on the dark current. This report presents experimental and modeling studies on the noise current in exemplar organic bulk heterojunction photodiodes, with 10 donor–acceptor combinations spanning wavelength between 800 and 1600 nm. A significant reduction of the noise and higher detectivity were found in devices using non-fullerene acceptors (NFAs) in comparison to those using fullerene derivatives. The low noise in NFA blends was attributed to a sharp drop off in the distribution of bandtail states, as revealed by variable-temperature density-of-states measurements. Taking disorder into account, we developed a general physical model to explain the dependence of thermal noise on the effective bandgap and bandtail spread. The model provides theoretical targets for the maximum detectivity that can be obtained at different detection wavelengths in inherently disordered infrared photodiodes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View