Skip to main content
eScholarship
Open Access Publications from the University of California

Engineering Bipolar Interfaces for Water Electrolysis Using Earth-Abundant Anodes

Abstract

Developing efficient and low-cost water electrolyzers for clean hydrogen production to reduce the carbon footprint of traditional hard-to-decarbonize sectors is a grand challenge toward tackling climate change. Bipolar-based water electrolysis combines the benefits of kinetically more favorable half-reactions and relatively inexpensive cell components compared to incumbent technologies, yet it has been shown to have limited performance. Here, we develop and test a bipolar-interface water electrolyzer (BPIWE) by combining an alkaline anode porous transport electrode with an acidic catalyst-coated membrane. The role of TiO2 as a water dissociation (WD) catalyst is investigated at three representative loadings, which indicates the importance of balancing ionic conductivity and WD activity derived from the electric field for optimal TiO2 loading. The optimized BPIWE exhibits negligible performance degradation up to 500 h at 400 mA cm-2 fed with pure water using earth-abundant anode materials. Our experimental findings provide insights into designing bipolar-based electrochemical devices.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View