Skip to main content
eScholarship
Open Access Publications from the University of California

Producing circular field harmonics inside elliptic magnet apertures with superconducting canted-cosine-theta coils

Abstract

Superconducting magnets with noncircular aperture are desired for accelerators and many other high-field applications. This paper presents new methods for the analytic design of elliptic bore superconducting accelerator magnets. Part 1 of this work shares the derivation of current to field relations between a sheet current density on an elliptic cylinder and the magnetic field harmonics inside the aperture. This result is explored in the general context of elliptic bore magnet design with relevant scaling laws compared between elliptic and circular bore magnets. In part 2, this approach is applied to the specific geometry of canted-cosine-theta (CCT) accelerator magnets, enabling analytic winding design for single or mixed circular harmonics within elliptic aperture CCT magnets.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View