Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla

Abstract

Unlabelled

Cultivation-independent surveys of microbial diversity have revealed many bacterial phyla that lack cultured representatives. These lineages, referred to as candidate phyla, have been detected across many environments. Here, we deeply sequenced microbial communities from acetate-stimulated aquifer sediment to recover the complete and essentially complete genomes of single representatives of the candidate phyla SR1, WWE3, TM7, and OD1. All four of these genomes are very small, 0.7 to 1.2 Mbp, and have large inventories of novel proteins. Additionally, all lack identifiable biosynthetic pathways for several key metabolites. The SR1 genome uses the UGA codon to encode glycine, and the same codon is very rare in the OD1 genome, suggesting that the OD1 organism could also transition to alternate coding. Interestingly, the relative abundance of the members of SR1 increased with the appearance of sulfide in groundwater, a pattern mirrored by a member of the phylum Tenericutes. All four genomes encode type IV pili, which may be involved in interorganism interaction. On the basis of these results and other recently published research, metabolic dependence on other organisms may be widely distributed across multiple bacterial candidate phyla.

Importance

Few or no genomic sequences exist for members of the numerous bacterial phyla lacking cultivated representatives, making it difficult to assess their roles in the environment. This paper presents three complete and one essentially complete genomes of members of four candidate phyla, documents consistently small genome size, and predicts metabolic capabilities on the basis of gene content. These metagenomic analyses expand our view of a lifestyle apparently common across these candidate phyla.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View