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ABSTRACT OF THE CAPSTONE PROJECT

Using Principal Component Analysis and Dynamic Mode Decomposition to Analyze
Spatio-Temporal Data

by

Maureen Long
July 2011

University of California, Merced

Abstract

We study two methods to analyze spatio-temporal data. To describe data, we use principal
component analysis. To predict data, we use dynamic mode decomposition. We compute nu-
merical solutions of the complex Ginzburg-Landau equation and we use that numerical solution
as data. Using principal component analysis we identify a low-dimensional subspace spanned
by only 3 principal components. Using these 3 principal components we can reconstruct the
original data matrix with approximately 2% error, and construct out-of-sample data with less
than 3% error. Using dynamic mode decomposition we are able to predict the temporal evolu-
tion of out-of-sample data as far as 500 time steps into the future with less than 5% error. The
combination of these two techniques provides robust and reliable methods to analyze complex
data sets.
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1 Introduction

Modern society has been generating ever increasing amounts of data, which has led to the demand
for data mining and analysis techniques. These techniques span the entire breadth of the compu-
tational sciences, and are rapidly developing into their own interdisciplinary field.

The two main goals of data mining are description and prediction. Description focuses on finding
features or patterns of a given set of data. Prediction involves using some variables to predict
future values of other variables. The main techniques that are used to fulfill these goals are clas-
sification, regression, clustering, summarization, dependency modeling, and change and deviation
detection [1].

In this paper we use two techniques to both describe spatial patterns of a data set, and offer
predictions as to how it will temporally evolve. We create a dynamically rich data set by solving
a model system, which enables us to assess the accuracy of our predictions. We find the dominant
behaviors using a spatial analysis referred to as Principal Component Analysis. We construct the
principal components of the system, and attempt to describe the original data set using only these
components. To predict how the system evolves, we use the Dynamic Mode Decomposition of the
system.

Using these two techniques enables us to provide both a description of the data set and make
some predictions about how the system will continue to evolve.

2 Model System

We study the complex Ginzburg-Landau equation

iut + q2(1− ic0)uxx − iρu+ (1 + iρ)|u|2u = 0, (1)

as our model system. This equation exhibits diffusion, dispersion, linear growth and nonlinearity.
Consequently, this model system possesses a rich set of dynamics. We use the complicated dy-
namics of this model system to generate data to analyze using principal component analysis and
dynamic mode decomposition.

The parameter q is a bifurcation parameter. Sirovich and Rodriguez [2] have characterized the
dynamics of the solution in terms of q. For example, they have found that for 0.6 ≤ q ≤ 0.7,
there exists a limit cycle (Figure 1(a)). In addition, for 0.7 ≤ q ≤ 0.827, there are two frequencies
(Figure 1(b)). To solve (1) numerically, we need a method that is accurate enough to handle the
complicated nonlinear dynamics exhibited by this model system. For that reason, we use a Fourier
pseudo-spectral method. In addition, we use the implicit Crank-Nicolson scheme for the linear
terms, and the Adams-Bashforth scheme for the nonlinear term. We explain the details of the
numerical method below.
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(a) Limit cycle behavior (q = 0.67) (b) Two frequency behavior (q = 0.78)

Figure 1: Solution of the Ginzburg-Landau equation with various bifurcation parameters.

Figure 2: Solution of the Ginzburg-Landau equation exhibiting chaotic behavior (q = 0.95)

2.1 Numerical Method

We seek the numerical solution of (1) with periodic boundary conditions using a Fourier pseudo-
spectral method on the collocation points xj = 2πj/N for j = 0, 1, · · · , N − 1.
We define the approximation

Uj(t) ≈ u(xj , t),

and the spectral approximation of the second derivative

D2
NUj(t) ≈ uxx(xj , t)

Our equation for (1) then becomes:

U ′j(t) = iq2(1− ic0)D2
NUj(t)− ρUj(t) + i(1 + iρ) |Uj(t)|2 Uj(t)

5



When we apply Crank-Nicolson/Adams-Bashforth (Unj ≈ u(xj , tn)), we obtain
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Rather than solve (2) directly, we solve it in the transform space. Using

Unj =

N/2−1∑
ξ=−N/2

ãξ(tn)eiξxj
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our update formula then becomes:[
1 +
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[∣∣∣Unj ∣∣∣2Unj ]. Rearranging terms, we obtain the update formula
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To obtain the solution in the physical domain, we compute

Un+1
j =

N/2−1∑
ξ=−N/2

ãξ(tn+1)e
iξxj .

Adams-Bashforth is a two-step numerical method. We initialize it using one step of forward Euler,
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while still evaluating the nonlinear term in the transform space.

ã1ξ =

[
1 +

ik

2
q2(1− ic0)ξ2 +

k

2
ρ

]−1
×
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1− ik

2
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k

2
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ã0ξ +

i

2
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[
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.

For all computations, we used the initial condition

u(x, 0) = 1 + 0.02 cosx

constants ρ = c0 = 1/4 and bifurcation parameter, q = 0.95 (placing our dynamics in the chaotic
regime). With N = 64 Fourier modes and M = 128, 000 time steps each of size ∆t = 0.001, we
obtain the solution plotted in Figure 2.

We store the generated solution of (1) in a data matrix, D, which we describe in detail in the
next section. We then use this generated data to study Principal Component Analysis for describing
data and the Dynamic Mode Decomposition for predicting data.

3 Principal Component Analysis

Principal Component Analysis (PCA) is a technique to reduce the dimensionality of a data set by
transforming to a new set of variables called principal components (PCs). The first few principal
components may account for most of the variation present in the original system. If that is the case,
we obtain a low-dimensional description of the data. We compute the Singular Value Decomposition
(SVD) of a matrix containing the spatio-temporal data to compute the PCs. The SVD is defined
as:

A = UΣV H ,

where U is an orthogonal matrix containing the eigenvectors of AAH , V is an orthogonal matrix
containing the eigenvectors of AHA, and Σ a diagonal matrix containing the nonnegative set of real
square roots of the eigenvalues of AHA and AAH in descending order, which are the coefficients
and standard deviations of the principal components, respectively [3]. To utilize this fact, we store
the solution to (1) at each time step as,

dn = [u(x1, tn) , u(x2, tn) , u(x3, tn) , . . . , u(xN , tn)]

with dn denoting an individual snapshot. The matrix D ∈ CM×N (where M is the total number of
time steps collected in D, and N is the number of collocation points, with M � N), is defined as

D = {d1, d2, d3, . . . , dM},

where each dM fills a row of the D matrix. We obtain our PCs by computing the SVD of this
matrix, the PCs fill the columns of the V matrix.

Once we know the PCs, we first study how well they reconstruct our original data contained
in D. We then look at using them to approximate other data not contained in D. The columns of
V form an orthogonal basis which allows us to reconstruct the data as a linear combination of v̄i,
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Figure 3: Stem plot of the singular values of the data matrix D, truncated for clarity.

where v̄i are the columns of the eigenvector matrix V ,

dn = a1v̄1 + a2v̄2 + . . .+ aN v̄N .

We can then construct a subspace of the solution using the most relevant principal components, and
use this subspace to attempt to create an accurate low-dimensional approximation of the solution.
Our approximation to the solution will then be:

dn ≈ a1v̄1 + a2v̄2 + . . .+ aj v̄j

where there are j < N relevant principal components.

From looking at Figure 3, it appears that only the first 3 principal components will be relevant.
However, we can ensure this mathematically by first normalizing the values along the diagonal of
Σ as

M∑
j=1

σ2j = 1,

and then finding some M∗ < M such that:

M∗∑
j=1

σ2j ≥ 0.99.

In a least-squares sense, we can recover 99% of the information stored in D, by truncating this
sum at M∗. Using our data, we find that M∗ = 3. This result is expected since Sirovich and
Rodriguez [2] have established that there exists a three-dimensional attracting subspace for the
complex Ginzburg-Landau equation in this parameter regime.
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Re-expressing what we defined before:

[
v̄1 v̄2 v̄3

] a1a2
a3

 = d̄i

Since V is orthogonal, we find that: a1a2
a3

 =
[
v̄1 v̄2 v̄3

]T
d̄i,

To determine the accuracy of this reconstruction, we define our residual as:

ri =

∥∥∥∥∥d̄i −
M∗∑
n=1

anv̄n

∥∥∥∥∥
2

which is plotted in Figure 4, where we can see that we are getting approximately 2% error from
reconstructing D using only 3 vectors.
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Figure 4: Plot of the residual from recreating D using M∗ = 3 vectors and using M∗ + 1 = 4
vectors.

We now test whether our results generalize to out-of-sample data, by checking to see if we can
reconstruct data not contained in D. We utilize the same technique, applied to a different data set:

d2,i = [u(x1, t2n) , u(x2, t2n) , u(x3, t2n) , . . . , u(xN , t2n)]

and the data matrix:
D2 = {d2,1, d2,2, d2,3, . . . , d2,M},
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and then using the same procedure as before:
a1
a2
...

aM∗

 =
[
v̄1 v̄2 . . . v̄M∗

]T
d̄2,i

We now find the residual in reconstructing D2, plotted in Figure 5. From Figure 5, we can see that
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Figure 5: Plot of the residual from recreating D2 using M∗ = 3 vectors.

we are able to reconstruct out-of-sample data using data in D with only approximately 2% error.

The next step is to examine if we can reconstruct the solution of a slightly shifted problem. In
this case we look at shifting from q = 0.95 to q′ = 0.97. The same setup process applies. We
simply apply our PCs from the original Dq to the Dq′ matrix, and evaluate the residual as before.
The results are shown in Figure 6. Here, we actually see a good reconstruction with only 6% error.
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Figure 6: Plot of the residual from reconstructing Dq′ using M∗ = 3 vectors.
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For this data we have obtained a low-dimensional subspace that effectively reconstructs the data.
The principal components of the system allow us to reduce our dimensionality from 64 to 3 (by
95%). A reconstruction of this data using only the spanning set of principal components is accurate
to within 2.5% of the original data matrix. When we test our PCA models on out-of-sample data,
we find that we can reconstruct data at a later time with only 2.1% error. We can also reconstruct
data with a slightly modified bifurcation parameter with only 6% error. This technique is most
useful when the original data set has a low-dimensional subspace.

4 Dynamic Mode Decomposition

The Dynamic Mode Decomposition, or DMD, allows us to predict how the solution will change in
time using temporal evolution of the data. This technique requires us to make the assumption that
the future data is a linear transformation of the past data. Therefore, we assume a model of the
form:

Di+1 = ADi (3)

where we call A the system matrix. To compute this matrix A, we compute a SVD of the Di

matrix:
Di = UΣV H .

Substituting that result into (3), we obtain

Di+1 = A · UΣV H

If we define the pseudoinverse of Σ as Σ+, we find that:

A ∼= Di+1V Σ+UH

We use A derived from a data set contained in D1, as defined above, to predict what will happen
in future time steps.

In Figure 7 we compare the numerical solution of (1) at tn = 5 to the approximation given by
Adn−1. Figure 7(a) is a much more accurate approximation than Figure 7(b) because we are com-
puting an approximation that is only 5 time steps away from our system matrix’s source data,
instead of 1000 time steps away. Figure 8 plots the error in the approximation of predicting farther
into the future without recalculating the system matrix.

To analyze the system, we look at the approximation

dn ≈ Adn−1,
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(a) tn = 5
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(b) tn = 1000

Figure 7: Plots of the numerical solution to (1), compared to plots of the DMD prediction at each
corresponding time-step

which leads to
dn = And0

If we write diagonalize A, we obtain
un = SΛnS−1u0

However, Λ is just a diagonal matrix of the form:
λ1

λ2
. . .

λn

 .
There are three cases to consider. The eigenvectors corresponding to |λ| < 1 will decay as n in-
creases, those corresponding to |λ| > 1 will grow as n increases, and those corresponding to |λ| = 1
will be neutrally stable.

Plotting the eigenvalues of A and the unit circle, we can see that we have 6 eigenvalues that
are close to the unit circle. There are also two eigenvalues situated outside the unit circle, which
lead to the growth of error in the approximation.

For this data set, we obtained a predictive model that allowed us to accurately predict how the
data evolves through time. We obtain well under 5% error for up to 500 time steps (t = 0.5) after
the last snapshot in Di.
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Figure 8: Plot of the residual from the numerical solution and the DMD prediction
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Figure 9: Plots of the eigenvalues of the system matrix A, with the unit circle overlayed

5 Conclusions

We have presented a set of techniques for describing and predicting complex spatio-temporal data.
Using a spatial analysis, we described our data set by constructing a set of principal components
which nearly span the space of the solution. We can then use this subspace to approximately
reconstruct data at other time steps and for other values of the bifurcation parameter. Using a
temporal analysis, we found the dynamic modes of our system, which enables us to predict how
the system will change at future time steps.

Using the principal component technique, we were able to reconstruct the original data using
only 3 vectors, with under 3% error. The construction of data at a later time step, and of a shifted
bifurcation parameter, also resulted in error under 6%. When the data exists on a low-dimensional
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subspace, this technique will be very useful.

The dynamic mode decomposition allowed us to predict the temporal evolution of the out-of-
sample data. In fact, the technique allows us to make predictions greater than 500 time steps into
the future time with error under 5%. However, it is a linear approximation. We have found that
the error for this data set rises exponentially.

Data description and prediction is a computationally expensive process. However, both the PCA
and DMD techniques are computationally robust, reliable and effective methods for analyzing com-
plex data sets.
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