Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

On demand delivery and analysis of single molecules on a programmable nanopore-optofluidic device.

Abstract

Nanopore-based single nanoparticle detection has recently emerged as a vibrant research field with numerous high-impact applications. Here, we introduce a programmable optofluidic chip for nanopore-based particle analysis: feedback-controlled selective delivery of a desired number of biomolecules and integration of optical detection techniques on nanopore-selected particles. We demonstrate the feedback-controlled introduction of individual biomolecules, including 70S ribosomes, DNAs and proteins into a fluidic channel where the voltage across the nanopore is turned off after a user-defined number of single molecular insertions. Delivery rates of hundreds/min with programmable off-times of the pore are demonstrated using individual 70S ribosomes. We then use real-time analysis of the translocation signal for selective voltage gating of specific particles from a mixture, enabling selection of DNAs from a DNA-ribosome mixture. Furthermore, we report optical detection of nanopore-selected DNA molecules. These capabilities point the way towards a powerful research tool for high-throughput single-molecule analysis on a chip.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View