- Main
Unifying fragmented perspectives with additive deep learning for high-dimensional models from partial faceted datasets.
Abstract
Biological systems are complex networks where measurable functions emerge from interactions among thousands of components. Many studies aim to link biological function with molecular elements, yet quantifying their contributions simultaneously remains challenging, especially at the single-cell level. We propose a machine-learning approach that integrates faceted data subsets to reconstruct a complete view of the system using conditional distributions. We develop both polynomial regression and neural network models, validated with two examples: a mechanical spring network under external forces and an 8-dimensional biological network involving the senescence marker P53, using single-cell data. Our results demonstrate successful system reconstruction from partial datasets, with predictive accuracy improving as more variables are measured. This approach offers a systematic method to integrate fragmented experimental data, enabling unbiased and holistic modeling of complex biological functions.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.