Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
Review and Implementation of Common Statistical Methods for Recommender Systems
- McKeag, Candace Jennifer
- Advisor(s): Handcock, Mark S
Abstract
As a result of today's massive information overload, the exploration and development of recommender systems is burgeoning. This paper consists of a comprehensive literature review in which the current knowledge surrounding statistical methods for recommender systems is outlined and evaluated. For each method, the theoretical premise and application-related aspects such as optimal use cases and common research problems are described. To round out the literature review, an implementation of several collaborative filtering techniques is conducted in order to apply the discussed theory and identify some advantages and disadvantages of the methods.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%