Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Sparse expansions of multicomponent oxide configuration energy using coherency and redundancy

Abstract

Compressed sensing has become a widely accepted paradigm to construct high dimensional cluster expansion models used for statistical mechanical studies of atomic configuration in complex multicomponent crystalline materials. However, strict sampling requirements necessary to obtain minimal coherence measurements for compressed sensing to guarantee accurate estimation of model parameters are difficult and in some cases impossible to satisfy due to the inability of physical systems to access certain configurations. Nevertheless, the dependence of energy on atomic configuration can still be adequately learned without these strict requirements by using compressed sensing by way of coherent measurements using redundant function sets known as frames. We develop a particular frame constructed from the union of all occupancy-based cluster expansion basis sets. We illustrate how using this highly redundant frame yields sparse expansions of the configuration energy of complex oxide materials that are competitive and often surpass the prediction accuracy and sparsity of models obtained from standard cluster expansions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View