- Main
Propositional semantics for default logic
Abstract
We present new semantics for propositional default logic based on the notion of meta-interpretations - truth functions that assign truth values to clauses rather than letters. This leads to a propositional characterization of default theories: for each such finite theory, we show a classical propositional theory such that there is a one-to-one correspondence between models for the latter and extensions of the former. This means that computing an extension and answering questions about coherence, set-membership, and set-entailment are reducible to propositional satisfiability. The general transformation is exponential but tractable for a subset which we call 2-DT which is a superset of network default theories and disjunction-free default theories. This leads to the observation that coherence and membership for the class 2-DT is NP-complete and entailment is co-NP-complete.
Since propositional satisfiability can be regarded as a constraint satisfaction problem (CSP), this work also paves the way for applying CSP techniques to default reasoning. In particular, we use the taxonomy of tractable CSP to identify new tractable subsets for Reiter's default logic. Our procedures allow also for computing stable models of extended logic programs.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-