Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Dynamics of human neocortex that optimizes its stability and flexibility

Abstract

The electroencephalogram (EEG) in states of awake, sleep, and seizure in a patient with intractable partial complex seizures was recorded through a 1 - x 1 -cm microgrid of 64 electrodes on the right inferior temporal gyrus during a week-long neurosurgical evaluation. Comparisons with a normal intracranial EEG were perforce from animals. Analytic phase and amplitude from the Hilbert transform gave the temporal resolution needed to resolve EEG spatiotemporal structure. The rest state revealed multiple overlapping patterns of high-frequency coherent oscillations resembling bubbles in boiling water. Bubble diameters gave estimates of the distances across the cortex over which the cortical oscillations were synchronized. Superimposed on these bubbles were large-sized epochs of phase locking with briefly constant frequency and high amplitude. These coordinated analytic phase differences occurred between short periods of high phase variance. The variance gave evidence for state transitions between transiently stable states with constant phase gradients. In sleep these phase patterns persisted with reduced amplitude, occasionally interrupted by long-lasting (similar to 1 s) epochs with no spatial textures in phase and amplitude despite a large increase in amplitude. Seizures had high amplitude 3/s spikes with steep spatial gradients. Onset occurred after pre-ictal reduction in bubble diameters as evidence for large-scale cortical disintegration preceding loss of stability. (c) 2006 Wiley Periodicals, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View