Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Attenuation of Age-Related Hearing Impairment in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice Treated with Fatty Acid Synthase Inhibitor CMS121

Published Web Location

https://link.springer.com/article/10.1007/s12031-023-02119-w
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

In the senescence-accelerated mouse prone 8 (SAMP8) mouse model, oxidative stress leads to premature senescence and age-related hearing impairment (ARHI). CMS121 inhibits oxytosis/ferroptosis by targeting fatty acid synthase. The aim of our study was to determine whether CMS121 is protective against ARHI in SAMP8 mice. Auditory brainstem responses (ABRs) were used to assess baseline hearing in sixteen 4-week-old female SAMP8 mice, which were divided into two cohorts. The control group was fed a vehicle diet, while the experimental group was fed a diet containing CMS121. ABRs were measured until 13 weeks of age. Cochlear immunohistochemistry was performed to analyze the number of paired ribbon-receptor synapses per inner hair cell (IHC). Descriptive statistics are provided with mean ± SEM. Two-sample t-tests were performed to compare hearing thresholds and paired synapse count across the two groups, with alpha = 0.05. Baseline hearing thresholds in the control group were statistically similar to those of the CMS121 group. At 13 weeks of age, the control group had significantly worse hearing thresholds at 12 kHz (56.5 vs. 39.8, p = 0.044) and 16 kHz (64.8 vs. 43.8, p = 0.040) compared to the CMS121 group. Immunohistochemistry showed a significantly lower synapse count per IHC in the control group (15.7) compared to the CMS121 group (18.4), p = 0.014. Our study shows a significant reduction in ABR threshold shifts and increased preservation of IHC ribbon synapses in the mid-range frequencies among mice treated with CMS121 compared to untreated mice.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item