Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Comparing time-dependent density functional theory with many-body perturbation theory for semiconductors: Screened range-separated hybrids and the GW plus Bethe-Salpeter approach

Abstract

We present band structure and optical absorption spectra obtained from density functional theory (DFT) and linear response time-dependent DFT (TDDFT) calculations using a screened range-separated hybrid (SRSH) functional, including spin-orbit coupling, for seven prototypical semiconductors. The results are compared to those obtained from highly converged many-body perturbation theory calculations using the GW approximation and the GW plus Bethe-Salpeter equation (GW-BSE) approaches. We use a single empirical parameter for our SRSH calculations, fit such that the SRSH band gap reproduces the GW band gap at the Γ point. We then find that ground-state generalized Kohn-Sham SRSH eigenvalues accurately reproduce the band structure obtained from GW calculations, typically to within 0.1-0.2 eV, and optical absorption spectra obtained using TDDFT with the SRSH functional agree well with those of GW-BSE, with a mean deviation of 0.03 and 0.11 eV for the location of the first and second absorption peaks, respectively, at a fraction of the computational cost.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View