Skip to main content
eScholarship
Open Access Publications from the University of California

Coordinate transformation methodology for simulating quasistatic elastoplastic solids

Abstract

Molecular dynamics simulations frequently employ periodic boundary conditions where the positions of the periodic images are manipulated in order to apply deformation to the material sample. For example, Lees-Edwards conditions use moving periodic images to apply simple shear. Here, we examine the problem of precisely comparing this type of simulation to continuum solid mechanics. We employ a hypoelastoplastic mechanical model, and develop a projection method to enforce quasistatic equilibrium. We introduce a simulation framework that uses a fixed Cartesian computational grid on a reference domain, and which imposes deformation via a time-dependent coordinate transformation to the physical domain. As a test case for our method, we consider the evolution of shear bands in a bulk metallic glass using the shear transformation zone theory of amorphous plasticity. We examine the growth of shear bands in simple shear and pure shear conditions as a function of the initial preparation of the bulk metallic glass.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View