Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain

Abstract

Anandamide is an endogenous signaling lipid that binds to and activates cannabinoid receptors in the brain and peripheral tissues. The endogenous precursors of anandamide, N-arachidonoyl phosphatidylethanolamines (NArPEs), are a family of complex glycerophospholipids that derive from the exchange reaction of an arachidonoyl group between the sn-1 position of phosphatidylcholine and the primary amine of phosphatidylethanolamine catalyzed by N-acyl transferase activity. A precise characterization of the molecular composition of NArPE species generating anandamide has not yet been reported. In the present study, using liquid chromatography coupled to electrospray ionization ion-trap mass spectrometry, we identified the major endogenous NArPE species, which mainly contained sn-1 alkenyl groups (C16:0, C18:0, C18:1) and monounsaturated (C18:1) or polyunsaturated (C20:4, C22:4, C22:6) acyl groups at the sn-2 position of the glycerol backbone. Using rat brain particulate fractions, we observed a calcium-dependent increase in both NArPEs and anandamide formation after incubation at 37 degrees C for 30 min. Furthermore, a targeted lipidomic analysis showed that Ca(2+) specifically stimulated the formation of PUFA-containing NArPE species. These results reveal a previously unrecognized preference of brain N-acyl transferase activity for polyunsaturated NArPE and provide new insights on the physiological regulation of anandamide biosynthesis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View