Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Intrusion errors moderate the relationship between blood glucose and regional cerebral blood flow in cognitively unimpaired older adults.

Abstract

Regional cerebral blood flow (CBF) has a complex relationship with cognitive functioning such that cognitively unimpaired individuals at risk for Alzheimers disease (AD) may show regional hyperperfusion, while those with cognitive impairment typically show hypoperfusion. Diabetes and word-list intrusion errors are both linked to greater risk of cognitive decline and dementia. Our study examined associations between fasting blood glucose, word-list intrusion errors, and regional CBF. 113 cognitively unimpaired older adults had arterial spin labeling MRI to measure CBF in a priori AD vulnerable regions: medial temporal lobe (MTL), inferior parietal lobe (IPL), precuneus, medial orbitofrontal cortex (mOFC), and pericalcarine (control region). Hierarchical linear regressions, adjusting for demographics, vascular risk, and reference CBF region, examined the main effect of blood glucose on regional CBF as well as whether intrusions moderated this relationship. Higher glucose was associated with higher CBF in the precuneus (β = .134, 95% CI = .007 to .261, p = .039), IPL (β = .173, 95% CI = .072 to .276, p = .001), and mOFC (β = .182, 95% CI = .047 to .320, p = .009). There was no main effect of intrusions on CBF across regions. However, the glucose x intrusions interaction was significant such that having higher glucose levels and more intrusion errors was associated with reduced CBF in the MTL (β = -.186, 95% CI = -.334 to -.040, p = .013) and precuneus (β = -.146, 95% CI = -.273 to -.022, p = .022). These findings may reflect early neurovascular dysregulation, whereby higher CBF is needed to maintain unimpaired cognition in individuals with higher glucose levels. However, lower regional CBF in unimpaired participants with both higher glucose and more intrusions suggests a failure in this early compensatory mechanism that may signal a decrease in neural activity in AD vulnerable regions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View