- Main
Leveraging knowledge engineering and machine learning for microbial bio-manufacturing
Published Web Location
https://doi.org/10.1016/j.biotechadv.2018.04.008Abstract
Genome scale modeling (GSM) predicts the performance of microbial workhorses and helps identify beneficial gene targets. GSM integrated with intracellular flux dynamics, omics, and thermodynamics have shown remarkable progress in both elucidating complex cellular phenomena and computational strain design (CSD). Nonetheless, these models still show high uncertainty due to a poor understanding of innate pathway regulations, metabolic burdens, and other factors (such as stress tolerance and metabolite channeling). Besides, the engineered hosts may have genetic mutations or non-genetic variations in bioreactor conditions and thus CSD rarely foresees fermentation rate and titer. Metabolic models play important role in design-build-test-learn cycles for strain improvement, and machine learning (ML) may provide a viable complementary approach for driving strain design and deciphering cellular processes. In order to develop quality ML models, knowledge engineering leverages and standardizes the wealth of information in literature (e.g., genomic/phenomic data, synthetic biology strategies, and bioprocess variables). Data driven frameworks can offer new constraints for mechanistic models to describe cellular regulations, to design pathways, to search gene targets, and to estimate fermentation titer/rate/yield under specified growth conditions (e.g., mixing, nutrients, and O2). This review highlights the scope of information collections, database constructions, and machine learning techniques (such as deep learning and transfer learning), which may facilitate "Learn and Design" for strain development.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-