- Main
Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection.
Published Web Location
https://doi.org/10.1093/genetics/iyab188Abstract
Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-