Skip to main content
eScholarship
Open Access Publications from the University of California

A Uranyl Peroxide Dimer in the Gas Phase

Abstract

The gas-phase uranyl peroxide dimer, [(UO2)2(O2)(L)2]2+ where L = 2,2'-trifluoroethylazanediyl)bis(N,N'-dimethylacetamide), was synthesized by electrospray ionization of a solution of UO22+ and L. Collision-induced dissociation of this dimer resulted in endothermic O atom elimination to give [(UO2)2(O)(L)2]2+, which was found to spontaneously react with water via exothermic hydrolytic chemisorption to yield [(UO2)2(OH)2(L)2]2+. Density functional theory computations of the energies for the gas-phase reactions are in accord with observations. The structures of the observed uranyl dimer were computed, with that of the peroxide of particular interest, as a basis to evaluate the formation of condensed phase uranyl peroxides with bent structures. The computed dihedral angle in [(UO2)2(O2)(L)2]2+ is 145°, indicating a substantial deviation from the planar structure with a dihedral angle of 180°. Energies needed to induce bending in the most elementary gas-phase uranyl peroxide complex, [(UO2)2(O2)]2+, were computed. It was found that bending from the lowest-energy planar structure to dihedral angles up to 140° required energies of <10 kJ/mol. The gas-phase results demonstrate the inherent stability of the uranyl peroxide moiety and support the notion that the uranyl-peroxide-uranyl structural unit is intrinsically planar, with only minor energy perturbations needed to form the bent structures found in studtite and uranyl peroxide nanostructures.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View