Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
Seed germination prediction of Salvia limbata under ecological stresses in protected areas: an artificial intelligence modeling approach
Published Web Location
https://doi.org/10.1186/s12898-020-00316-4Abstract
Background
Salvia is a large, diverse, and polymorphous genus of the family Lamiaceae, comprising about 900 ornamentals, medicinal species with almost cosmopolitan distribution in the world. The success of Salvia limbata seed germination depends on a numerous ecological factors and stresses. We aimed to analyze Salvia limbata seed germination under four ecological stresses of salinity, drought, temperature and pH, with application of artificial intelligence modeling techniques such as MLR (Multiple Linear Regression), and MLP (Multi-Layer Perceptron). The S.limbata seeds germination was tested in different combinations of abiotic conditions. Five different temperatures of 10, 15, 20, 25 and 30 °C, seven drought treatments of 0, -2, -4, -6, -8, -10 and -12 bars, eight treatments of salinity containing 0, 50, 100.150, 200, 250, 300 and 350 mM of NaCl, and six pH treatments of 4, 5, 6, 7, 8 and 9 were tested. Indeed 228 combinations were tested to determine the percentage of germination for model development.Results
Comparing to the MLR, the MLP model represents the significant value of R2 in training (0.95), validation (0.92) and test data sets (0.93). According to the results of sensitivity analysis, the values of drought, salinity, pH and temperature are respectively known as the most significant variables influencing S. limbata seed germination. Areas with high moisture content and low salinity in the soil have a high potential to seed germination of S. limbata. Also, the temperature of 18.3 °C and pH of 7.7 are proposed for achieving the maximum number of germinated S. limbata seeds.Conclusions
Multilayer perceptron model helps managers to determine the success of S.limbata seed planting in agricultural or natural ecosystems. The designed graphical user interface is an environmental decision support system tool for agriculture or rangeland managers to predict the success of S.limbata seed germination (percentage) in different ecological constraints of lands.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%