Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

The pyruvate decarboxylase activity of IpdC is a limitation for isobutanol production by Klebsiella pneumoniae

Abstract

Background

Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. The ipdC gene annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate.

Results

Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis pathways, Kp-IpdC has an 2.8-fold lower Km for 2-ketoisovalerate, leading to higher isobutanol production without induction. However, expression of ipdC by IPTG induction resulted in a low isobutanol titer. In vitro enzymatic reactions showed that Kp-IpdC exhibits promiscuous pyruvate decarboxylase activity, which adversely consume the available pyruvate precursor for isobutanol synthesis. To address this, we have engineered Kp-IpdC to reduce pyruvate decarboxylase activity. From computational modeling, we identified 10 amino acid residues surrounding the active site for mutagenesis. Ten designs consisting of eight single-point mutants and two double-point mutants were selected for exploration. Mutants L546W and T290L that showed only 5.1% and 22.1% of catalytic efficiency on pyruvate compared to Kp-IpdC, were then expressed in K. pneumoniae for in vivo testing. Isobutanol production by K. pneumoniae T290L was 25% higher than that of the control strain, and a final titer of 5.5 g/L isobutanol was obtained with a substrate conversion ratio of 0.16 mol/mol glucose.

Conclusions

This research provides a new way to improve the efficiency of the biological route of isobutanol production.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View